A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   R   S   T   U   V   W   X   Y   Z  

Takata, K.

Paper Title Page
WPBTA01 J-PARC RCS縦方向シミュレーション 247
 
  • M. Yamamoto, M. Nomura, S. Alexander, T. Shimada, H. Suzuki, F. Tamura
    日本原子力研究開発機構 J-PARCセンター
  • E. Ezura, K. Takata
    高エネルギー加速器研究機構
  • K. Hasegawa, K. Hara, C. Ohmori, A. Takagi, M. Toda, M. Yoshii
    高エネルギー加速器研究機構 J-PARCセンター
  • K. Horino
    日本アドバンストテクノロジー
 
 

J-PARC RCSでは、ビーム供用のための運転を開始した。縦方向ビーム力学については、入射時の空間電荷効果の緩和や取り出し時の各種ユーザー向けのビーム操作などのビームスタディーを行っている。これまで、縦方向ビームの性質については、空間電荷効果やビーム負荷を取り入れたシミュレーションコードを使って計算をしてきており、計算による予測とビームを使った実測の比較を行う。

 
FPACA39 直接給電型ACS線形加速器の検討 1041
 
  • F. Naito, K. Takata, Y. Yamazaki
    高エネルギー加速器研究機構
  • H. Ao, H. Asano, N. Ouchi, K. Hasegawa, K. Hirano, T. Morishita
    日本原子力研究開発機構
 
 

J-PARCリニアックに於いて190~400MeVのビーム加速には環状結合型空洞(ACS)が使用される。ACSは17加速セルを一つの単位空洞とし、2つの空洞がブリッジ空洞で高周波的に連結され1モジュール(17x2=34加速セル)となる。ブリッジによりRF的な取り扱いは非常に単純化される。一方、ブリッジ空洞を使わずにクライストロン出力を2分割し、2空洞にRFを直接供給する形式も考えられる。RF分割器と位相調整器等の製作と現場での調整が必要だが、ブリッジ空洞の製作費と比較すると安価にできる可能性がある。更に加速セルの中央セルからRFを供給できれば、給電ポイントから端部までのセル数が半減でき、加速電場はブリッジを使用する場合よりも摂動に強くなる。本稿では直接給電型ACSの実現可能性に関し、アルミ製モデルを使用した実験および数値計算を用いて検討した結果を報告する。

 
FPACA40 量産型ACS空洞試験機の製作 1044
 
  • H. Ao, H. Asano, N. Ouchi, K. Hasegawa, K. Hirano, T. Morishita
    日本原子力研究開発機構
  • K. Takata, F. Naito, Y. Yamazaki
    高エネルギー加速器研究機構
 
 

J-PARC LINACでは平成20年度から3カ年計画で現180MeVから400MeVへのアップグレードが始まった。ACS (Annular Coupled Structure)はこの200~400MeV区間に用いる結合形加速空洞である。これまでの開発段階で、我々はまずバンチャ用の短いモジュールを2台、続いて加速用のモジュールの製作と大電力試験を行ってきた。量産時、ACSを構成する中間セルは約1300枚必要であり、加工時間の短縮は非常に重要となる。昨年度から、特に加工時間を要していた結合スロット周囲の加工方法と形状の改良を進め、ローレベル測定での確認を経て、改良型スロットの形状を採用した大電力試験機の製作を進めてきた。改良点を中心に、これまでの結果について報告する。

 
FPACA44 反射体を用いたACS空洞の結合度調整 1056
 
  • K. Hirano, H. Ao, H. Asano, N. Ouchi, K. Hasegawa, T. Morishita
    日本原子力研究開発機構
  • K. Takata, F. Naito, Y. Yamazaki
    高エネルギー加速器研究機構
 
 

J-PARCリニアックでは、190MeVから400MeVまでの高エネルギー加速部にACS (Annular Coupled Structure)を有する加速空洞を用い、ビームエネルギーを増強する準備を進めている。製作された第1番目のACSモジュールの結合係数は2であった。反射体を使用して、結合係数をOptimum Coupling(1.5)に調整することを検討している。また、このとき、高周波窓は定在波の影響を受け、その上昇温度が増加する場合があるため、高周波窓を無反射状態と同じパワロスになるように設置することも検討している。本稿では、高周波窓設置位置を考慮し、反射体を用いて結合係数を調整する計算結果について報告する。

 
FPACA51 Core buckling position measurement for J-PARC RCS cavity 1077
 
  • A. Schnase, C. Ohmori, F. Tamura, E. Ezura, K. Hara, K. Hasegawa, M. Nomura, T. Shimada, H. Suzuki, A. Takagi, M. Toda, M. Yamamoto, M. Yoshii
    J-PARCセンター
  • K. Takata
    高エネルギー加速器研究機構
 
 

An impedance reduction had been detected in the J-PARC RCS cavity #7 in January 2009. After taking out and opening the cavity tanks, buckling at the inner radius was detected at some of the MA cores. Here we describe the development and application of a magnetic sensor, which can detect the buckling of the cores in the stainless steel water tanks without the need for taking out and opening them.

 
FPACA52 高周波加速空胴用金属磁性体コアの熱変形の測定 1080
 
  • T. Shimada, M. Yamamoto, H. Suzuki, F. Tamura, A. Schnase, M. Nomura
    日本原子力研究開発機構 J-PARCセンター
  • M. Toda, K. Hasegawa, C. Ohmori, K. Hara, M. Yoshii
    高エネルギー加速器研究機構 J-PARCセンター
  • K. Takata, E. Ezura, A. Takagi
    高エネルギー加速器研究機構
  • K. Horino
    日本アドバンストテクノロジー
 
 

J-PARC 3GeV シンクロトロン高周波加速空胴において、長時間の運転後、金属磁性体を使用したコアの一部が座屈する現象が発生した。その過程と原因を調査するために、大気中においてコアを高周波電流によって励磁し、変形の過程を測定した。その結果とコアの製造過程の関係及びコアの耐久性向上についての考察を報告する。