A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   R   S   T   U   V   W   X   Y   Z  

Takahashi, H.

Paper Title Page
WPAPA01 J-PARCハドロンターゲットステーションにおける大型真空箱"ペンタゴン" 73
 
  • H. Takahashi, K. Agari, E. Hirose, M. Ieiri, Y. Katoh, A. Kiyomichi, M. Minakawa, R. Muto, M. Naruki, Y. Sato, S. Sawada, Y. Shirakabe, Y. Suzuki, M. Takasaki, K. Tanaka, A. Toyoda, H. Watanabe, Y. Yamanoi
    高エネルギー加速器研究機構
  • M. Iio
    理化学研究所
  • H. Noumi
    大阪大学核物理研究センター
 
 

J-PARCハドロン実験施設に設置されたターゲットステーションは、二次粒子生成標的T1とその直下流の真空箱とから成る。この真空箱は、高さ5.7m、ビーム方向の奥行き3.0m、容積29m3という大型のもので、その形状から通称「五角形、PENTAGON」と呼ばれている。真空内には、T1を起点とする二次ビームラインの最上流電磁石3台とビームコリメータが収納される。さらに、メンテナンス時の作業被曝を最小限に抑えるため、鉄2mとコンクリート1mの放射線遮蔽ブロックも真空内に置かれる。本年1月、2月にはビーム運転が行われ、その間、本真空箱と内部機器は非常に安定に動作し続けた。 本講演では、真空箱とその内部機器の詳細について発表する。

 
TPCOA20 IFMIF/EVEDA加速器制御系人員保護システム(PPS)の設計方針 487
 
  • T. Kojima, H. Takahashi, H. Sakaki, S. Maebara
    日本原子力研究開発機構
 
 

国際核融合材料照射施設に関する工学実証及び工学設計活動(IFMIF/EVEDA)におけるプロトタイプ加速器は、入射器、RFQ、初段の超伝導リナックからなり、加速器の定常運転を実証するため、9MeV/125mAと大強度のCW D+ビームを生成することが要求されている。 D+を加速した場合、中性子発生による放射化が大きな課題であり、PPSの高い信頼性が求められる。IFMIF/EVEDAでのPPS開発は、これまでに運用実績のあるJ-PARCをベースとし、さらに中枢となるプログラマブル ロジック コントローラー(PLC)として欧州標準汎用品であるシーメンス社製SIMATICを採用して開発を行う。 本発表では、IFMIF/EVEDA加速器PPSの設計方針を中心に報告する。

 
TPCOA19 IFMIF/EVEDA加速器制御系の概要 490
 
  • H. Takahashi, T. Kojima, H. Sakaki, S. Maebara
    日本原子力研究開発機構
 
 

国際核融合材料照射施設(IFMIF)に関する工学実証及び工学設計活動(EVEDA)加速器は、9MeV/125mAのCW D+ビームを生成する。IFMIF/EVEDA加速器は、入射器、RFQ、初段の超伝導リナック等のサブシステムで構成され、本活動における日本の実施機関であるJAEAは、建屋、制御系、RFQカプラ等の設計、製作、試験を主体となり実施する。 IFMIF/EVEDA加速器は、125mAの大電流であり、かつ、加速粒子がD+であることから、ビームロスによる放射化が大きな課題である。この放射化を十分考慮したPPS、MPS、Timing System等の制御系サブシステムの構築が重要である。 本発表では、制御系全体の設計と制御系サブシステムの機能について報告する。

 
TPOPA26 IFMIF/EVEDA原型加速器の進展状況 668
 
  • K. Shinto, C. Vermare, H. Asahara, M. Sugimoto, P. Garin
    IFMIF/EVEDA事業チーム
  • S. Maebara, H. Takahashi, H. Sakaki, T. Kojima, S. O’hira, T. Kikuchi, T. Kubo, K. Yonemoto, H. Kimura, Y. Okumura
    日本原子力研究開発機構
 
 

国際核融合材料照射施設(IFMIF)に関する工学実証及び工学設計活動(EVEDA)における原型加速器の進捗状況について報告する.IFMIFは加速器駆動型の中性子照射施設であり,2本の線形加速器で40MeV/250mAのCW D+ビームを生成することが要求されている.工学実証のための原型加速器は,入射器,RFQ,初段の超伝導リナック等のサブシステムで構成されており,9MeV/125mAのCW D+ビームを生成する.日・欧(フランス,スペイン,イタリア,ベルギー)の国際協力により2007年7月より開発が始められて,2012年秋より六ヶ所村の国際核融合エネルギー研究センター内IFMIF/EVEDA開発試験棟で入射器から段階的にビーム試験を行う予定である.本発表では,前回の年会以降の加速器システムの日欧の進展状況について報告する.

 
WOOPE04 J-PARCハドロン実験施設の建設とビームコミッショニング 70
 
  • Y. Sato, K. Agari, E. Hirose, M. Ieiri, Y. Katoh, A. Kiyomichi, M. Minakawa, R. Muto, M. Naruki, S. Sawada, Y. Shirakabe, Y. Suzuki, M. Takasaki, H. Takahashi, K. Tanaka, A. Toyoda, Y. Yamanoi, H. Watanabe
    高エネルギー加速器研究機構
  • H. Noumi
    大阪大学核物理研究センター
 
 

J-PARCハドロン実験施設は、50GeV陽子シンクロトロン(MR)から取り出された陽子ビームを実験室(ハドロン実験ホール)の二次粒子生成標的に照射し、K中間子等の二次粒子を発生させ、それらを用いて様々な原子核・素粒子物理学実験を行う施設である。MRにおいて30GeVに加速された陽子ビームは、3次共鳴を用いた遅い取り出しシステム(取り出し時間0.7秒)によって取り出され、ハドロン実験ホールに輸送される。2009年1月27日にMRからの最初の取り出し試験を行い、同日午後7時35分にハドロン実験ホール最下流のビームダンプまで無事輸送されたことを確認した。本講演では、ハドロン実験施設の建設とビームコミッショニング、そして今後の計画について報告する。

 
WPBDA01 J-PARC ハドロンビームライン用OTR ビームプロファイルモニタの開発(4) 130
 
  • A. Toyoda, K. Agari, M. Ieiri, Y. Katoh, A. Kiyomichi, Y. Sato, S. Sawada, Y. Shirakabe, Y. Suzuki, M. Takasaki, H. Takahashi, K. Tanaka, M. Naruki, E. Hirose, T. Mitsuhashi, M. Minakawa, R. Muto, Y. Yamanoi, H. Watanabe
    高エネルギー加速器研究機構
  • H. Noumi
    大阪大学
 
 

今回我々は本年2月にJ-PARCの遅い取り出しビームラインであるハドロンビームラインにビームを取り出すことに成功した。ビーム強度は連続モードで120 W程度と非常に低強度であったが、今まで開発してきたOTR検出器によってビームプロファイルを測定することに成功した。本発表においては、実機のOTR検出器の製作、光学調整、ビームライン設置、および実際に得られたプロファイルについて報告する。プロファイルに関しては、KEK-PSにおけるプロトタイプOTR実験の際に見られたチェレンコフ起源と思われるバックグラウンドがきれいに落ちており、新規光学システムの有用性が確認された。残りのわずかなバックグラウンドを引いた後に位置、幅情報を評価した。位置に関してはリファレンスモニターとよい一致が見られたが、幅に関しては一致しなかった。この原因について、および今後の展望などの詳細についても発表する。

 
WPAPA03 J-PARC ハドロンビームライン真空窓の開発 272
 
  • Y. Yamanoi, K. Agari, H. Watanabe, M. Ieiri, Y. Katoh, A. Kiyomichi, Y. Sato, S. Sawada, Y. Suzuki, M. Takasaki, H. Takahashi, K. Tanaka, A. Toyoda, M. Naruki, E. Hirose, M. Minakawa, R. Muto
    高エネルギー加速器研究機構
  • T. Nakamura
    MIRAPRO
 
 

J-PARC ハドロンビームラインの二次粒子生成ターゲットは、直接水冷の回転円盤方式(フルビーム750kW時)を採用した。そのため、ターゲット前後ではビーム輸送のための真空が一旦大気圧に戻る必要がある。真空ビームパイプの端面となるこのビーム窓の製作には、ターゲットと同じビームによる熱負荷、冷却水による腐食、さらに交換機能などを考慮した設計が必要となる。 本発表では、この設計方法と実機製作を行った結果を報告する。

 
TPOPA01 J-PARCハドロンビームダンプの設計・開発(3) 699
 
  • K. Agari, M. Ieiri, Y. Katoh, A. Kiyomichi, Y. Sato, Y. Shirakabe, Y. Suzuki, H. Takahashi, M. Takasaki, K. Tanaka, A. Toyoda, M. Naruki, E. Hirose, M. Minakawa, R. Muto, Y. Yamanoi, H. Watanabe
    高エネルギー加速器研究機構
  • H. Noumi
    大阪大学
 
 

J-PARC 素粒子原子核実験施設(ハドロンホール)は2008年12月に陽子ビーム受け入れ可能状態になり、今年2月に実験が開始され、K中間子の生成が確認された。このビームラインの最下流に設置されるビームダンプはフルビーム(50GeV、15μA)を吸収できるように設計され、無酸素銅、それを取り囲むようにして鉄・コンクリートで構成されている。陽子ビームは無酸素銅部分でほとんど吸収され、この外周には水冷却用配管加工が施されている。ビームダンプの設計・開発は2008年3月で終了し、設置は5月から10月末にかけて行われ、今年2月にビームの吸収に成功した。その設計・開発および設置方法について報告する。また設置後のメンテナンス方法、銅表面温度モニター、インターロックシステムについても発表する。

 
WPCEA04 IFMIF/EVEDA開発試験棟の工事進捗状況 207
 
  • T. Kubo, S. Maebara, S. O’hira, H. Takahashi, K. Yonemoto, T. Kojima, T. Kikuchi, H. Sakaki, H. Kimura, K. Okumura, K. Shinto, M. Sugimoto
    日本原子力研究開発機構 核融合研究開発部門
  • C. Vermare, P. Garin
    IFMIF/EVEDA事業チーム
 
 

国際核融合材料照射施設(IFMIF)に関する工学実証及び工学設計活動(EVEDA)における原型加速器の実証施設であるIFMIF/EVEDA開発試験棟の工事進捗状況について報告する。IFMIF/EVEDA開発試験棟は、日欧国際協力である幅広いアプローチ活動(BA)の一環として、平成19年度に詳細設計を行い、同3月から青森県六ヶ所村にある国際核融合エネルギー研究センター敷地内で建設工事を行っている。平成20年度中には地下躯体の構築が完了し、現在地上部の工事を行っている。本発表では、建物の概要、工程および工事の進捗状況を報告する。