A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   R   S   T   U   V   W   X   Y   Z  

Yamaguchi, S.

Paper Title Page
FPACA43 Recent Progresses in the LLRF FPGA Control System of the J-PARC Linac 1053
 
  • Z. Fang, S. Michizono, S. Anami, S. Yamaguchi, F. Naito, Y. Fukui, M. Kawamura, C. Kubota, K. Nanmo
    高エネルギー加速器研究機構
  • T. Kobayashi, H. Suzuki, E. Chishiro, S. Shinozaki, N. Tsubota, T. Ito, H. Asano, K. Hasegawa
    日本原子力研究開発機構
 
 

The recent progresses in the LLRF FPGA control system of the J-PARC LINAC will be presented in this paper, including 1) automatically switching the beam loading compensation in accordance with the different beam operation mode, 2) chopped beam compensation for the 972-MHz section, and 3) input rf-frequency tuning to match the rf cavities. All of those functions are realized by the FPGA.

 
FPACA47 J-PARCリニアックのデジタルLLRF制御における空洞起ち上げのための入力周波数変調制御 1065
 
  • T. Kobayashi, H. Suzuki
    日本原子力研究開発機構 J-PARCセンター
  • S. Anami, S. Michizono, Z. Fang, S. Yamaguchi
    高エネルギー加速器研究機構
 
 

J-PARCリニアックの低電力高周波制御では、空洞に電力を入れ始める際に、空洞チューナー共振周波数の自動制御を行なっている。このチューナー制御に代わって新たに、空洞入力の周波数を離調度に合わせて変調させる方式をデジタルFB制御システムに導入する。その方法として、出力制御するIQ変調器で位相を回転させることで周波数変調を行なう。離調度は、RFパルス後の空洞減衰時 􏰈自由振動時􏰉 の位相変化を測定することで求められ、それにより、FPGAでIQ変調器の位相回転を自動制御する。この方式の導入においてはハードウェアの変更を全く必要とせず、チューナー製造におけるコストダウンもしくは耐久性の向上が期待される。

 
FPACA48 J-PARCリニアック972MHz高周波デジタルフィードバック制御システム 1068
 
  • T. Kobayashi, H. Suzuki
    日本原子力研究開発機構 J-PARCセンター
  • S. Michizono, Z. Fang, T. Matsumoto, S. Yamaguchi
    高エネルギー加速器研究機構
  • Y. Okada
    NECネットワーク・センサ株式会社
 
 

J-PARCリニアックでは972MHzのRFシステムによる400MeVエネルギーへの増強が計画が進められている。その加速電界の安定性は振幅、位相それぞれ±1%、±1度以内が要求されている。デジタルFBの基本コンセプトは現在の324MHzのシステムと同じでコンパクトPCI筐体を用いる。大きな違いは、RF信号/クロック信号発生器(RF&CLKボード)、ミキサーおよびIQ変調器(IQ&Mixerボード)、そしてデジタル制御のアルゴリズムである。現在の324MHzの空洞に比べ、高い周波数により減衰時間が速くなるため、チョップドビーム負荷補償が大きな開発要素の一つである。この報告では972MHzデジタルフィードバックシステムの特徴や性能について、模擬空洞を用いた評価結果をまとめた。

 
FPACA49 J-PARC972MHzクライストロンテストスタンドのデータ収集 1071
 
  • Y. Fukui, M. Kawamura, S. Yamaguchi, F. Naito
    高エネルギー加速器研究機構
  • H. Suzuki, T. Kobayashi, E. Chishiro
    日本原子力研究開発機構
  • M. Yamazaki
    三菱電機システムサービス株式会社
 
 

J-PARCのリニアックではイオン源で生成された負水素イオンを181MeVまで加速して、3GeVシンクロトロン(RCS)に供給しており、さらにリニアックのエネルギーを400MeVまで増強する計画が現在進められている。 陽子加速器開発棟の地下2階に設置されているクライストロンテストスタンドは、972MHzRF機器やACS空洞の大電力試験が行える唯一の施設であり、現在も増強計画で使用される予定の972MHzクライストロンのRF試験が行われている。今回、このテストスタンドで972MHzクライストロンの特性測定を行うにあたって、PLCを用いたLLRF制御の自動化やデータ収集系の構築を行ったので報告する。

 
TPOPA03 J-PARC-RFQの現状 693
 
  • K. Hasegawa, T. Morishita, Y. Kondo, H. Oguri, T. Kobayashi
    日本原子力研究開発機構
  • F. Naito, M. Yoshioka, H. Matsumoto, H. Kawamata, Y. Hori, Y. Saito, S. Yamaguchi, C. Kubota
    高エネルギー加速器研究機構
 
 

J-PARCリニアックのRFQは、イオン源からの50keV水素負イオンビームを3MeVまで加速しDTLへ入射する。リニアックは2006年11月にビーム試験を開始し、2007年9 月には後段の加速器である3GeVシンクロトロンにビーム供給を開始するなど、コミッショニングを予定通り進めてきたが、2008年秋の運転からRFQでのトリップ回数が増加し安定性が低下した。これを受けて、RFQ周辺のRF制御や真空系などの改善を図るとともに、コンディショニングによる状態の回復で、ビーム運転が可能なまでに回復した。本稿では、こうしたJ-PARC-RFQの状況と改善点について報告する。