A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   R   S   T   U   V   W   X   Y   Z  

Oyamada, K.

Paper Title Page
TPOPA21 理研重イオンリニアックの現状報告 622
 
  • E. Ikezawa, Y. Watanabe, M. Kase
    理化学研究所 仁科加速器研究センター
  • T. Ohki, T. Aihara, H. Yamauchi, A. Uchiyama, K. Oyamada, M. Tamura
    住重加速器サービス株式会社
 
 

 理研重イオンリニアック(RILAC)は、1981年に運転開始され、現在、理研リングサイクロトロン(RRC)及び理研RIビームファクトリー(RIBF)の入射器としての運転を、またRILAC単独運転を行っている。昨年末から、RIBFにおけるウランビーム増強のため、RILACの旧入射器を改造し、その高電圧ターミナル上に新入射器(RILAC-Ⅱ)用28GHz-ECRISを設置した。この28GHz-ECRISの性能試験をここで行うため、そこからRILACへの入射ライン設置工事を行っている。またRILAC後段の荷電状態増幅装置用共振器(CSM)のうち1台をRILAC-Ⅱ用の加速器として使用するために、既設ラインから撤去し現在改造を行っている。RILAC用照射実験室では、超重元素探索実験装置の2号機を設置する工事も進行中である。  本発表では、RILACに関して、運転状況を含めた現状ついて報告する。

 
FRVAA03 RIビームファクトリーのウラン加速におけるリニアック真空の問題 965
 
  • S. Yokouchi, N. Fukunishi, E. Ikezawa, H. Okuno, Y. Watanabe, M. Kase, O. Kamigaito
    理化学研究所
  • K. Oyamada
    住重加速器サービス株式会社
 
 

ウラン加速は理研RIビームファクトリー(RIBF)の重要な運転スキームの一つである。現在、ウランビーム強度0.4 pnAを達成しているが、目標の1 pμAまでにはさらに大幅な改善が必要である。 ビーム強度が低い原因の一つとして、残留気体との衝突時における低エネルギーでの荷電変換反応によるビーム損失に着目し、リニアックの真空と通過効率の関係を測定した。通過効率を悪化させている場所の真空排気系を増強した結果、リニアックの通過効率は約10%改善された。 RIBFではビーム強度改善のため新入射器が計画されており、現在、その先行施設を建設中である。新入射器の低・中エネルギーBTラインで要求される真空はμPa台前半である。そのため、ターボ分子ポンプにくわえてクライオポンプを配して排気系を強化した。また、ダクトおよびチェンバの内面は放出ガス低減のためコーティング処理等の内面処理を施した。