A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   R   S   T   U   V   W   X   Y   Z  

Matsumoto, H.

Paper Title Page
WOOPB04 J-PARC MRの遅い取り出し 30
 
  • M. Tomizawa, T. Adachi, Y. Arakaki, A. Ando, K. Ishii, K. Okamura, J. Odagiri, N. Kamikubota, F. Kuanjun, A. Kiyomichi, T. Koseki, Y. Sato, S. Sawada, Y. Shirakabe, H. Someya, J. Takano, K. Tanaka, S. Tokumoto, H. Nakagawa, Y. Hashimoto, H. Matsumoto, R. Muto, S. Murasugi, E. Yanaoka
    高エネルギー加速器研究機構
  • S. Onuma, K. Mochiki
    東京都市大学
  • H. Sato
    筑波技術大学
  • I. Sakai
    福井大学
  • M. Takagi
    関東情報サービス
  • N. Nagura
    日本アドバンストテクノロジー
 
 

J-PARCメインリング(MR)では、3次共鳴を利用した遅い取り出しによって、加速された陽子ビームを素粒子・原子核実験施設へ供給する。遅い取り出し装置は、静香セプタム、セプタム磁石、バンプ磁石、共鳴を励起するための6極磁石、それらの電源から構成される。また蹴りだされたビームを診断するためのスクリーンモニターが設けられている。平成19年度に装置の大半が製作され、その後のオフラインでの試験に引き続き装置のインスール作業が行われた。今年の1月に行われたビームコミッショニングで30GeVに加速されたビームを素粒子・原子核実験施設へ導くことに成功した。取り出されたビームのスピルをフィードバックにより平滑化するための4極磁石とフィードバック制御装置はこの夏にインストールされ、秋からのビームコミッショニングで試験を行う予定となっている。以上の内容に加えて今後の課題についても報告する。

 
WPBDA02 J-PARC MR BPMの運転経験 250
 
  • T. Toyama, D. Arakawa, Y. Hashimoto, S. Hiramatsu, S. Igarashi, S. Lee, H. Matsumoto, J. Odagiri, K. Satou, J. Takano, M. Tejima, M. Tobiyama, N. Yamamoto
    高エネルギー加速器研究機構
  • K. Hanamura, S. Hatakeyama
    三菱電機システムサービス株式会社
  • N. Hayashi
    日本原子力研究開発機構
 
 

2008, 2009年のビームコミッショニングでのBPMの動作状況を報告する。まず、動作の概要、およびコミッショニング初期の動作不良とその原因をまとめる。そのうち、ビームパイプの段差による電場の歪みで発生したと考えられるオフセット誤差については、原因の考察、応急対策、根本対策について述べる。次に、3BPM相関法による分解能の調査結果を示す。現在はバンチ当りビーム強度が設計値の1%程度で、かつほとんど1バンチ加速であり、信号が小さいため、データ1点(約50μs〜リング周回数にして約10ターン相当)の位置分解能は数100μmである。分解能向上のために平均操作を行なっている。さらにビーム・ベースド・アラインメントの測定状況の速報、今後のビーム強度増強に対応するための課題も含める予定である。

 
TPCOA07 J-PARC MRコミッショニングと機器アプリケーションの進化 527
 
  • N. Kamikubota, S. Murasugi, J. Odagiri, N. Yamamoto, H. Matsumoto
    高エネルギー加速器研究機構
  • M. Takagi, T. Iitsuka, S. Yoshida
    関東情報サービス
  • N. Nagura, M. Mutoh
    日本アドバンストテクノロジー
 
 

J-PARC MR加速器は2008年5月にビームコミッショニングを開始した。 加速器の初期ビームコミッショニングは特殊な時期であり、さまざまな想定外の問題が判明して機器本体や制御アプリケーションは急速に改修されていくものである。 本稿では、MRの入出射機器(Kicker、Septumなど)を例にとって、約1年のコミッショニングでアプリケーションがどのように進化したかを報告する。

 
TPMGA13 J-PARCメインリングにおける遅い取り出しのためのセプタム磁石の開発 566
 
  • R. Muto, Y. Arakaki, K. Fan, K. Ishii, A. Kiyomichi, H. Kobayashi, H. Matsumoto, S. Murasugi, H. Nakagawa, J. Odagiri, K. Okamura, H. Sato, S. Sawada, Y. Shirakabe, K. Tanaka, S. Tokumoto, M. Tomizawa, E. Yanaoka
    高エネルギー加速器研究機構
  • I. Sakai
    福井大学
 
 

J-PARCメインリングからハドロン実験ホールへの遅い取り出しのためのセプタム磁石の製造・試験をおこない、2008年12月にメインリングへインストールした。2009年1月から2月のビームタイムにおいて、遅い取り出しビームのハドロンホールへの供給に成功した。セプタム磁石は全5種類10台の磁極から成り、セプタム厚はもっとも薄い最上流で1.5mmである。典型的な運転電流は3000Aであり、30GeV陽子ビームに対する総キック角は77mradである。ビームロスによる放射化が懸念される低磁場・中磁場セプタムは、無機材料のみで構成されており、またロスを少なくするために、遠隔操作にてビームに対して直角に±5mm動かすことが出来る構造になっている。本発表では、セプタム磁石のデザインの詳細と、KEKつくばでの試験とビームタイムにおける運転の結果を報告する。

 
TPOPA03 J-PARC-RFQの現状 693
 
  • K. Hasegawa, T. Morishita, Y. Kondo, H. Oguri, T. Kobayashi
    日本原子力研究開発機構
  • F. Naito, M. Yoshioka, H. Matsumoto, H. Kawamata, Y. Hori, Y. Saito, S. Yamaguchi, C. Kubota
    高エネルギー加速器研究機構
 
 

J-PARCリニアックのRFQは、イオン源からの50keV水素負イオンビームを3MeVまで加速しDTLへ入射する。リニアックは2006年11月にビーム試験を開始し、2007年9 月には後段の加速器である3GeVシンクロトロンにビーム供給を開始するなど、コミッショニングを予定通り進めてきたが、2008年秋の運転からRFQでのトリップ回数が増加し安定性が低下した。これを受けて、RFQ周辺のRF制御や真空系などの改善を図るとともに、コンディショニングによる状態の回復で、ビーム運転が可能なまでに回復した。本稿では、こうしたJ-PARC-RFQの状況と改善点について報告する。

 
FPACA34 Cバンド加速管量産中間報告 1024
 
  • S. Miura
    三菱重工業株式会社
  • T. Shintake, T. Inagaki, H. Maesaka, N. Azumi
    理化学研究所播磨研究所
  • S. Matsui, H. Kimura
    高輝度光科学研究センター
  • H. Matsumoto
    高エネルギー加速器研究機構
 
 

三菱重工では2002年から2005年にかけて、理化学研究所播磨研究所殿向けに、Cバンドチョークモード加速管4本を開発、製作した。本加速管らは、SCSSテストライナックに使用されており、軸上電界37MV/mで安定に稼動している。 2007年より、理化学研究所殿X-FEL計画向けにCバンドチョークモード型加速管128本の量産を開始し、2009年6月現在で86本の生産を完了した。これらの加速管のうち何本かは、RFエージングを理化学研究所殿で実施され、軸上電界40MV/mで問題なく運転できることが確認されている。これらの加速管量産中間結果について報告する。

 
FPACA41 J-PARCリニアックにおけるRFQ工学設計 1047
 
  • T. Morishita, Y. Kondo, K. Hasegawa
    日本原子力研究開発機構
  • F. Naito, M. Yoshioka, H. Matsumoto, Y. Hori, H. Kawamata, Y. Saito, H. Baba
    高エネルギー加速器研究機構
  • Y. Iino
    株式会社トヤマ
 
 

J-PARCリニアックでは、RFQ(全長3.1m、4vane型、運転周波数324MHz)を使用してイオン源からの負水素イオンビームを50keVから3MeVへ加速し、DTLへ入射している。リニアックでは2006年11月にビーム調整運転を開始し、2007年9 月には後段の加速器であるRCSにビーム供給を開始した。2008年秋の運転中、RFQでのトリップ回数が増加し、安定性が低下する事象が発生した。この事態を受けて、バックアップRFQの製作に着手している。バックアップ機の製作において、ユーザーへのビーム供用が開始されたJ-PARCでの運転を念頭に置き、空洞の安定性に主眼を置いた設計方針を基本としている。本発表では、安定性向上のための工学設計に関するR&D結果及び設計進捗状況について報告する。

 
FPACA42 J-PARCリニアックにおけるRFQ高周波設計 1050
 
  • T. Morishita, Y. Kondo, K. Hasegawa
    日本原子力研究開発機構
  • F. Naito, H. Matsumoto, Y. Hori
    高エネルギー加速器研究機構
 
 

J-PARCリニアックでは、RFQ(全長3.1m、4vane型、運転周波数324MHz)を使用してイオン源からの負水素イオンビームを50keVから3MeVへ加速し、DTLへ入射している。2008年秋の運転中、RFQでのトリップ回数が増加し、安定性が低下する事象が発生した。そこで、現在使用しているRFQのバックアップ機として、RFQを新規に製作することとした。本発表では、3次元電磁界シミュレーションを用いたRFQにおける高周波設計検討結果について報告する。