A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   R   S   T   U   V   W   X   Y   Z  

Iwata, Y.

Paper Title Page
WPAPA04 放医研新治療エリアに向けたビームラインの建設 192
 
  • T. Shirai, Y. Iwata, T. Furukawa, S. Sato, A. Itano, N. Saotome, E. Takeshita, K. Noda
    放射線医学総合研究所
  • T. Fujimoto, T. Miyoshi, S. Shibuya, A. Takubo, Y. Sano
    加速器エンジニアリング株式会社
  • Y. Kanai, N. Suetake
    株式会社東芝
 
 

放射線医学総合研究所では、高速スキャニング照射技術を核とした次世代照射システムの開発に取り組んでおり、それを実際の治療に応用するために、新治療エリアを、HIMAC棟の横に建設中である。新治療エリアに、HIMACシンクロトロンからビームを供給するためには、150m程度のビームラインが必要であり、現在その設計ならびに製作をおこなっている。このビームラインは、治療に合わせて、高速なエネルギー変更をおこなうなどの特徴をもっており、本発表では、こうした点を中心に、ビーム光学系・電磁石・真空系などについて発表をおこなう。

 
WPBDA27 高速準非破壊スクリーンビームモニタシステムの開発 332
 
  • N. Saotome, T. Kohno
    東京工業大学
  • T. Furukawa, Y. Iwata, T. Shirai, T. Inaniwa, S. Sato, A. Nagano, E. Takeshita, K. Noda
    放射線医学総合研究所
  • T. Kanai
    群馬大学
 
 

現在、放医研ではHIMACからビームラインを延長して、スキャニング照射法を用いる照射ポートを備える、新治療棟の建設を行っている。新高エネルギービーム輸送系(HEBT)では、(1)高分解能の測定が行える、(2)既存のマルチワイヤ型ビームプロファイルモニタ(MWPC)に比べて低コストで作成できるというメリットのために、スクリーンビームプロファイルモニタ(SCN)が採用される予定である。SCNを用いることで、高速にビーム位置及び、サイズを測定することができる。さらに、SCNを通過するビームに対してあまり影響を与えないことから、準非破壊モニタとして使用することができる。ここでは、SCNの試作機を製作し、ビーム試験を行った結果を報告する。

 
TPOPA16 HIMAC加速器の現状 631
 
  • I. Kobayashi, Y. Honda, M. Yamamoto, M. Wakaisami, Y. Kageyama, T. Sasano, K. Ichinohe, M. Kawashima, Y. Sano
    加速器エンジニアリング株式会社
  • E. Takada, Y. Iwata, S. Sato, M. Muramatsu
    放射線医学総合研究所
 
 

放医研の重イオン加速器HIMACは順調な治療及び生物・物理実験ビーム供給を続けている。特に重粒子線がん治療は良好な治療成績を収め、現在までの登録患者数は4500名を超えている。患者数は年々増加しており、現在、年間700名近くの治療を行っている。 一方、装置は治療開始から16年目を迎え、装置の老朽化も無視できない状況にある。HIMACでは3台のイオン源や二重シンクロトロンリングを有するなどバックアップ体制も整っているが、唯一線形加速器部分だけは二重化されていない。そこで放医研が16年度より2ヶ年計画で重粒子線がん治療装置の小型化に関する研究として開発した高効率小型入射器をHIMACへ移設し、第2入射器として利用すべく整備を進めている。高効率小型入射器をHIMACへ組み込む事で装置の二重化が更に進み、より安定した治療ビーム供給が見込まれる。高効率小型入射器と現用装置の比較、現在までの移設の状

 
FPACA57 HIMAC入射器ライナックにおける新型AGC&APC制御装置の開発 1097
 
  • T. Takeuchi, M. Yamamoto, T. Sasano
    加速器エンジニアリング株式会社
  • Y. Ohta, T. Sato
    株式会社サムウェイ
  • Y. Iwata
    放射線医学総合研究所
 
 

放医研HIMAC入射器ライナックは5台の空洞(RFQ1台、DTL3台、DBC1台)から構成され、それぞれのローレベル高周波制御には振幅、位相を必要な精度で一定値に追従させるAGC/APC制御装置が用いられている。HIMACではフィードバックスピードをより早く、振幅・位相安定度をさらに高め、ノイズ耐性に優れる新型AGC/APC制御装置の開発が進められており、昨年度に製作および動作テストが行われた。新型AGC/APC制御装置の動作テスト結果と回路変更点、さらにAPC動作を安定化する追加回路について報告する。また新型装置は、使用から10年以上経過した既存のAGC/APC制御装置での運用履歴および不具合事例を反映し、不具合頻度の高い箇所の強化と供給中トラブルに対し不具合箇所を容易に特定し交換可能であるよう配慮した設計がなされている。これら保守の観点からの改造点についても報告する。

 
FPACA58 HIMACシンクロトロンにおけるT-clock加速 1101
 
  • T. Fujimoto
    加速器エンジニアリング株式会社
  • M. Kanazawa, T. Shirai, Y. Iwata, K. Noda
    放射線医学総合研究所
  • K. Watanabe
    東芝メディカルシステムズ株式会社
  • K. Maeda
    株式会社東芝
  • K. Hayashi, T. Nakai
    三菱電機特機システム株式会社
 
 

重粒子線がん治療装置HIMACのシンクロトロンにはCo基アモルファスコアを使用した無同調RF空洞が小型化開発用に組み込まれている。これまでこの空洞を利用してT-clockによる加速試験が行われてきた。その良好な加速結果からこの空洞をHIMACシステムへ組み込む計画も進められている。この空洞は現行の同調型空洞の予備としてだけでなく次世代スポットスキャニング照射用の複雑な運転パターンでの利用が期待されている。HIMACシステムに組み込み次世代スポットスキャニング照射で利用するためには加速時の磁場とRF周波数のずれによるシンクロトロン振動の励起を極力抑える必要がある。そのために必要なRF周波数パターン作成法の確立、T-clock周波数の最適化を行った。ここではその試験結果について報告する。

 
WPBTA07 Reduction of uncontrollable spilled beam in RF-KO slow-extraction 85
 
  • K. Mizushima, T. Shirai, T. Furukawa, S. Sato, Y. Iwata, K. Noda
    放射線医学総合研究所 物理工学部
  • H. Uchiyama, T. Fujisawa
    加速器エンジニアリング株式会社
 
 

The RF-KO slow-extraction method has been used for fast on/off switching of the beam from the synchrotron during scanning irradiation at HIMAC. However, the controllable low beam rate is limited by a small amount of beam which spilled out without the transverse RF field. We could reduce it to 0.4 % compared to the original method by adding the another transverse RF field.