A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   R   S   T   U   V   W   X   Y   Z  

Furukawa, K.

Paper Title Page
WPCEA12 LASER-BASED ALIGNMENT SYSTEM FOR THE 500-M-LONG KEK ELECTRON/POSITRON INJECTOR LINAC: CALIBRATION OF SILICON PHOTODETECTORS 94
 
  • E. Kadokura, T. Suwada, M. Satoh, K. Furukawa
    高エネルギー加速器研究機構
 
 

KEK電子陽電子入射器(以下、入射器)では、加速器本体のアライメントシステムの再構築を計画している。入射器のアライメントシステムは、1995年のKEKB改造時に再構築され精力的に測定されたが、1998年6月を最後に行われていない。これは、測定の簡便性に欠けることやシステムの老朽化が主な理由である。次期計画であるSuperKEKBに向けた入射器の高度化に伴い、アライメントの重要性が再認識された。本報告では、レーザー用シリコンフォトダイオードを用いた光検出器の校正システムと校正結果についてまとめる。

 
WPCEA13 ソフトウェアデータムに基づく長距離における高精度な真直度評価方法 118
 
  • T. Kume, M. Satoh, T. Suwada, K. Furukawa
    高エネルギー加速器研究機構
  • E. Okuyama
    秋田大学
 
 

全長約500mと100mの2台の線形加速器からなるKEK電子陽電子入射器では、下流の蓄積リングの高度な安定化を達成するために、既存技術では達成することが困難な高精度なアライメントと、それに伴う真直度評価方法の確立が望まれている。 ここでは、走査型の形状測定に伴う誤差要因を、ソフトウェア的な手法により分離、除去する、ソフトウェアデータムに基づく形状測定方法の、当該真直度評価への適用可能性を見積もるため、最も基本的な差分形状を検出する方法について、実験とシミュレーションに基づいた検討を行った。 その結果、実測定環境において、被測定物の差分形状が14マイクロrad(シグマ)程度の繰返し性で測定可能であることが示された。この場合、被測定物の差分形状を測定間隔2mで逐次測定することで、目標とする測定長500mにおいて、1mm(2シグマ)未満の繰返し性での真直度評価が可能と見込まれる。

 
WOOPE02 KEKB加速器の現状 63
 
  • H. Koiso, T. Abe, K. Akai, M. Akemoto, A. Akiyama, M. Arinaga, K. Ebihara, K. Egawa, A. Enomoto, J. Flanagan, S. Fukuda, H. Fukuma, Y. Funakoshi, K. Furukawa, T. Furuya, K. Hara, T. Higo, H. Hisamatsu, H. Honma, T. Honma, K. Hosoyama, T. Ieiri, N. Iida, H. Ikeda, M. Ikeda, H. Ishii, A. Kabe, E. Kadokura, T. Kageyama, K. Kakihara, E. Kako, S. Kamada, T. Kamitani, K. Kanazawa, H. Katagiri, S. Kato, T. Kawamoto, S. Kazakov, M. Kikuchi, E. Kikutani, K. Kitagawa, Y. Kojima, I. Komada, K. Kudo, N. Kudoh, K. Marutsuka, M. Masuzawa, S. Matsumoto, T. Matsumoto, S. Michizono, K. Mikawa, T. Mimashi, S. Mitsunobu, T. Miura, K. Mori, A. Morita, Y. Morita, H. Nakai, H. Nakajima, T. Nakamura, K. Nakanishi, K. Nakao, S. Ninomiya, M. Nishiwaki, Y. Ogawa, K. Ohmi, Y. Ohnishi, S. Ohsawa, Y. Ohsawa, N. Ohuchi, K. Oide, M. Ono, T. Ozaki, K. Saito, H. Sakai, Y. Sakamoto, M. Sato, M. Satoh, Y. Seimiya, K. Shibata, T. Shidara, M. Shirai, A. Shirakawa, T. Sueno, M. Suetake, Y. Suetsugu, T. Sugimura, T. Suwada, Y. Suzaki, S. Takano, S. Takasaki, T. Takenaka, Y. Takeuchi, M. Tawada, M. Tejima, M. Tobiyama, N. Tokuda, Y. Yamamoto, Y. Yano, K. Yokoyama, M. Yoshida, M. Yoshida, S. Yoshimoto, K. Yoshino, D. Zhou, Z. Zong
    高エネルギー加速器研究機構
 
 

KEKB加速器は2007年1月に超伝導クラブ空洞を導入し、同年10月以後、順調にクラブ交差による実用運転を行なっている。クラブ交差で高いルミノシティを達成するには、従来のレベルを超えた精密な誤差補正とビーム衝突調整が不可欠である。その一つとして、今期新たに、電子・陽電子両リングに合わせて28台の歪6極磁石を設置し、衝突点における水平垂直結合の運動量依存性を補正したが、この補正が突破口となって、クラブ以前の記録17.6/nb/sを大きく上回るピークルミノシティ20.84/nb/sが達成された。また、1日・7日間などの積分ルミノシティも記録を更新し、現在総積分ルミノシティは953/fbに達している。入射ビームをパルス毎に切り替えてKEKB両リングと放射光リングの3者に同時入射する技術が最近実用化され、衝突調整の効率が向上したことも、今回の成果に繋がっている。

 
WOCOA02 F3RP61を利用した組込みEPICSの加速器制御への応用 435
 
  • J. Odagiri, S. Araki, K. Furukawa, N. Kamikubota, A. Kiyomichi, K. Mikawa, S. Murasugi, H. Nakagawa, S. Yamada, N. Yamamoto
    高エネルギー加速器研究機構
  • K. Kameda, T. Natsui, H. Shiratsu
    横河電機株式会社
  • M. Komiyama
    理化学研究所
  • S. Motohashi, M. Takagi
    関東情報サービス
  • N. Nagura
    日本アドバンストテクノロジー株式会社
  • T. Nakamura
    三菱電機システムサービス株式会社
  • A. Uchiyama
    住重加速器サービス株式会社
 
 

FA-M3 PLCのCPUモジュールであるF3RP61を利用した新しいInput / Output Controller (IOC)を開発した。F3RP61はOSとしてLinuxを採用した点に特徴がある。このため、F3RP61の上で直接、EPICSのコア・プログラムを実行することができる。FA-M3の多様で豊富なI/Oモジュールを利用することにより、このIOCには電源制御、インタロック状態のモニタ、ステッピング・モータ制御、ビームモニタのためのデータ収集などの様々な用途がある。このIOCの採用によって、これまでIOC層とPLC層に分かれていた二つのフロントエンド計算機を一つにまとめることが可能となり、アプリケーション・ソフトウェアの開発と維持が格段に容易になった。本稿ではJ-PARC主リング制御システムにおける導入例を中心に、F3RP61をIOCとして利用した各種の応用事例を紹介する。

 
TPCOA24 KEK Linac におけるイベントタイミングシステム 472
 
  • S. Kusano, T. Kudou
    三菱電機システムサービス株式会社
  • K. Furukawa, M. Satoh
    高エネルギー加速器研究機構
 
 

KEK Linac では、2006年より4つのリングへの同時入射に向けたビームラインの改造、ビーム開発、各種ソフトウェアの試験・開発を進めている。2008年秋にはほとんどの機器を置き換え、また同時入射に向けた試験を行った。2009年4月からは、実際に高速ビーム切り換えによる3つのリング(KEKB e-/e+, PF-Ring)への同時入射を行うことに成功している。本稿では、高速ビーム切り換えに必要とされていたEvent Generator/Receiverを用いたイベントタイミングシステムの導入について詳細を報告する。

 
TPCOA25 3リング同時入射用電子銃ビーム高速切替システム 475
 
  • M. Ikeda, S. Ohsawa, T. Sugimura, K. Furukawa, M. Satoh, A. Shirakawa
    高エネルギー加速器研究機構
 
 

KEK電子陽電子入射器は4つのリング(KEKBのLERとHER及びPFとPF-AR)に対してビームを供給している。このうち、KEKBリングとPFリングの3リングに対して最近連続入射を開始した。リング毎に異なったビームを随時入射するためには、ビーム毎に電子銃の異なるパラメータ(グリッドパルスの波高とタイミング、及びバイアス電圧)を高速で設定することが必要である。これを実現するために、50Hzの任意のタイミングで任意のビームを出せるように、20ミリ秒以内で電子銃のパラメータを設定する回路を構築した。このシステムについて報告する。

 
TPCOA23 KEK LinacにおけるEvent System用ユーザーインターフェイスの開発 478
 
  • T. Kudou, S. Kusano
    三菱電機システムサービス株式会社
  • K. Furukawa, M. Satoh
    高エネルギー加速器研究機構
 
 

KEK電子陽電子入射器(以下、入射器)では、2006年より、3つの異なるリング(KEKB 8 GeV電子/3.5 GeV陽電子及びPF 2.5 GeV 電子)へTop-up入射を行う事を目的とした入射器アップグレードを進めてきた。本アップグレードでは、入射器の最大ビーム繰り返し50 Hz(20 ms間隔)毎に異なるタイミング信号を生成し、現場の制御機器へ供給することが不可欠となる。このため、Event Generator/Receiverを用いた新タイミングシステム(Event System)の開発・導入を行っており、2009年4月以降、日常ビーム運転での使用を開始した。これに伴い、運転に必要とされる様々なEvent System用ユーザーインターフェイスの開発も行ってきた。本稿では、これらEvent System用ユーザーインターフェイスの現状について詳述する。

 
TPCOA12 KEKB と PF の 3 リング同時トップアップ運転のための広域・高速制御機構とビーム運転 511
 
  • K. Furukawa, E. Kadokura, K. Mikawa, T. Nakamura, M. Satoh, T. Suwada
    高エネルギー加速器研究機構
  • A. Kazakov
    総合研究大学院大学
  • T. Kudou, S. Kusano, T. Nakamura
    三菱電機システムサービス
 
 

KEKの8-GeV電子入射器はKEKBとPFの3つのリング加速器に特性の異なる電子や陽電子ビームを供給しており、それぞれ同時にトップアップ運転が可能となるように、入射器の改造を進めてきた。2008年秋にはほとんどの装置が整い、通常運転にそれぞれの装置を用いてビーム試験が進められた後に、2009年4月からは実際に同時トップアップ運転が行うことに成功した。この運転を実現するためには、広範囲に分散している数百の装置のうち百を越える装置の運転パラメータを20ミリ秒以内に確実に制御してビームモードを確立し、500を越える観測情報をビームモードを認識した上で収集する必要があった。この広域・高速制御機構を用いて、エネルギーで3倍以上、電荷で100倍以上異なるビームを扱う困難も克服した。このような新しいビーム制御機構はSuperKEKBを含めた今後の加速器においても有効に利用されると思われる。

 
TPCOA11 KEKBにおけるビームトランスポート用BPMの読み出し高速化 514
 
  • T. Aoyama, T. Nakamura, K. Yoshii
    三菱電機システムサービス(株) 加速器技術センター
  • N. Iida, M. Satoh, K. Furukawa, T. Nakamura
    高エネルギー加速器研究機構
 
 

KEKBのビームトランスポート(以下、BT) は、 e-/e+の2本のビームラインからなっており、数十秒間隔でそれぞれのビームラインを使って交互にKEK LinacからKEKBのHigh Energy Ring/Low Energy Ring(以下、HER/LER)の両リングにビームを入射していた。 KEKB を高いLuminosityで運転を続けるには、高く安定した蓄積電流が必要である。 このため e-/e+同時入射システムの実現が必要不可欠となる。 これは、e-とe+を最短20msの間隔で切り替えて、それぞれのリングに入射することができるシステムである。 これらの状況から安定した両リング同時入射を行うために、BTのBPMシステムの高速化が必要となった。 本原稿では BT BPMシステムの高速化について報告する。

 
TPCOA10 F3RP61によるビームマスク制御システムの開発 518
 
  • T. Nakamura
    三菱電機システムサービス(株) 加速器技術センター
  • K. Furukawa, T. Nakamura, J. Odagiri
    高エネルギー加速器研究機構
 
 

KEKBリングには、正規のビーム軌道から外れた荷電粒子を取り除きディテクターへのバックグラウンドを減らす可動マスクという装置がある。この可動マスクはFA-M3 PLCを使用して動作しており、そのPLCはVME IOCによって制御されている。IOCとPLCはGP-IB接続により通信を行っているが、近年GP-IBの通信異常が起こるようになってきていた。この問題を解決する為に、Linuxが動作するPLCの新しいCPUモジュールを使用したIOCへと移行する事とした。今回の更新により、制御方式が従来のラダーCPUとラダープログラムからLinux CPUとEPICSシーケンサへと置き換わり、ソフトウェアの開発と保守の効率化を図る事ができた。新しいIOCは2008年9月からビーム運転で使用され順調に動作している。ここでは、可動マスクの新しい制御システムの移行作業の詳細を記す。

 
TPCOA09 KEKBにおける、VME計算機 Upgradeの現状 521
 
  • K. Yoshii, T. Nakamura, T. Aoyama
    三菱電機システムサービス(株) 加速器技術センター
  • K. Furukawa, T. Nakamura, E. Kikutani, K. Mori
    高エネルギー加速器研究機構
 
 

KEKBでは加速器の主要機器を、VME計算機を利用した、Epics base の制御Systemを用いて制御している。 これまでは運転開始時から使用してきたEpics3.13、CPUはPPCの6750を主に使用し、開発や運用を行ってきた。 しかし、ネットワークの高速化やCPUの高速化が進み、現状では対応できない部分が徐々に問題となり、Epics, CPUのUpgradeの必要性が高まっていった。 2006年からEpicsを3.14、CPUをPPC-MVME5500へUpgradeする為の開発を始め、これまでにVXI, Trigger Reciver, PVME501, advme1522, Camacを搭載したCPU PPC-MVME5500によるVME制御を実現してきた。 ここでは、KEKBにおける、VME計算機Upgradeの現状について報告する。

 
TPCOA26 WindowsオシロスコープベースEPICS IOCを用いた高速BPMデータ収集システムの開発 714
 
  • M. Satoh, T. Suwada, K. Furukawa
    高エネルギー加速器研究機構
  • Y. Hu
    Brookhaven National Laboratory
  • T. Kudou, S. Kusano
    三菱電機システムサービス
 
 

KEK電子陽電子入射器(以下、入射器)では、4つのリング(KEKB電子/陽電子、PF, PF-AR)へ異なる品質のビームを供給している。今年度より、下流リングに於ける実験効率向上のため、KEKB電子/陽電子及びPFの3リングへ、同時にTop-up入射を実現している。本運転方式では、入射器の最大ビーム繰り返しである50 Hz(20 ms間隔)毎に異なるリングへのビーム入射をおこなっている。このため、長期間安定なビーム運転をおこなうためには、50 Hzすべてのビーム位置計測が不可欠となる。これらの要請から、Windows搭載型デジタルオシロスコープを用いた高速なビーム位置モニタ用データ収集系(以下、BPM-DAQ)を構築し、運用を開始している。本学会では、高速BPM-DAQシステムの構成及び性能評価の結果について報告する。

 
TOAPA02 医用電子クライオリニアックを基盤とするコンパクトERLの開発 752
 
  • I. Sato, K. Shintomi
    日本大学総合科学研究科
  • M. Takahashi, T. Saito, K. Abe, F. Shishikura, T. Yamamoto, K. Ishikawa, I. Murai, T. Fukakusa, S. Takahashi, T. Watanabe, N. Fukuda, H. Nagase
    日本大学医学部
  • K. Hayakawa, T. Tanaka, Y. Hayakawa, Y. Takahashi, T. Kuwada, K. Nakao, K. Nogami
    日本大学電子線利用研究施設
  • S. Fukuda, A. Enomoto, S. Ohsawa, K. Furukawa, Y. Ogawa, T. Suwada, K. Yokoyama, S. Noguchi, E. Kako, T. Tomaru, Y. Namito, H. Iwase
    高エネルギー加速器研究機構
  • A. Miura
    日本高周波
  • K. Maki
    三菱マテリアル
  • E. Tanabe, K. Kanno
    (株)エーイーティー
 
 

日本大学電子線利用研究施設では100MeV級の電子リニアックを活用し、パラメトリックX線放射(PXR)の実用化を進めた結果、PXRはコヒーレントX線源であることを実証した。現在、コンパクトPXRによるがん治療・診断システムの開発研究を進めている。そのための極低温に冷却した電子リニアックによる100MeV級電子リニアックのテーブルトップ化の開発研究を進めた結果、電子クライオリニアックはエネルギー回復機能を発揮させられることを明らかになり、コンパクトPXRによるがん治療・診断装置の実現性と実用化の可能性は一段と強まっている。このシンポジウムでは開発研究成果について発表する。

 
FOAPC02 超高エネルギー宇宙線観測用望遠鏡較正用 小型電子線形加速器の開発 818
 
  • T. Shibata, D. Ikeda, Y. Kondo, H. Sagawa, M. Fukushima
    東京大学宇宙線研究所
  • Y. Iino
    株式会社トヤマ
  • M. Ikeda, A. Enomoto, S. Ohsawa, K. Kakihara, M. Satoh, T. Shidara, T. Sugimura, S. Fukuda, K. Furukawa, M. Yoshida
    高エネルギー加速器研究機構
  • J. Matthews
    University of Utah
 
 

超高エネルギー宇宙線観測を目的としたテレスコープアレイ(TA)実験が2008年からアメリカ・ユタ州で開始された。TA実験では、宇宙線が作る空気シャワー中の荷電粒子やガンマ線を地上で観測する地表検出器と、荷電粒子によって発光する大気蛍光を観測する大気蛍光望遠鏡(FD)を用いている。FDによる宇宙線のエネルギー測定は大気蛍光量を用いて計算される。そこで、40MeV×10^9e^-/pulseの電子ビームを用いたエネルギー較正法が提案された。高エネルギー加速器研究機構にて開発された小型電子線形加速器(TA-LINAC)は2008年1月に完成し、4から12月にかけて試験運転が行われた。この試験でパルス毎のビーム電流測定精度が±6%、出力エネルギーの決定精度が<1%である事を確認した。TA-LINACは翌年の3月にFD観測サイトに移設され、ビーム運転とFDによる観測は今秋を予定している。

 
WOOPA04 日大LEBRA電子リニアックと光源の現状 18
 
  • T. Tanaka, K. Hayakawa, Y. Hayakawa, Y. Takahashi, T. Kuwada, T. Sakai, K. Nogami, K. Nakao, M. Inagaki
    日本大学量子科学研究所 電子線利用研究施設
  • I. Sato
    日本大学大学院総合科学研究科
  • A. Enomoto, S. Fukuda, S. Ohsawa, K. Furukawa, S. Michizono, K. Tsuchiya
    高エネルギー加速器研究機構 加速器研究施設
  • S. Wakatsuki, S. Yamamoto
    高エネルギー加速器研究機構 物質構造科学研究所
 
 

日本大学電子線利用研究施設(LEBRA)では125MeV電子リニアックを用いた近赤外自由電子レーザー(FEL)とパラメトリックX線(PXR)の学内共同利用を進め、年間2000時間の加速器運転を行っている。冷却装置の老朽化に伴い順次更新を行いながら冷却系の性能向上を図ってきた結果、加速管冷却水温は±0.01℃、クライストロン冷却水は±0.02℃の安定度を達成し、ビーム加速の安定化に大きく寄与した。しかし、電磁石電源の故障発生を始め既知・未知のビーム変動要因があり、不安定要因の特定とその抑制は、特に空間コヒーレントな単色X線であるPXRを回折強調位相コントラスト撮像に利用する上で重要な課題となっている。光源の高度化研究では、FELと非線形光学結晶による紫外領域の高調波、Si(220)結晶による33.2keVのPXRを発生し、利用可能波長範囲を拡張している。

 
FOCEB02 500m長KEK電子陽電子入射器におけるアライメント 1159
 
  • M. Satoh, T. Suwada, E. Kadokura, K. Furukawa
    高エネルギー加速器研究機構 加速器研究施設
  • T. Kudou, S. Kusano, Y. Mizukawa, K. Hisazumi
    三菱電気システムサービス
 
 

KEK電子陽電子入射器(以下、入射器)では、加速器本体のアライメントシステムの再構築を計画している。入射器のアライメントシステムは、1995年のKEKB改造時に再構築され精力的に測定されたが、1998年6月を最後に行われていない。これは、測定の簡便性に欠けることやシステムの老朽化が主な理由である。次期計画であるSuper-KEKBに向けた入射器の高度化に伴い、アライメントの重要性が再認識された。本学会では、アライメントシステムの概要について報告する。