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1. INTRODUCTION

A convenient way to describe particle beam behavior is through the use of statistics. For instance,
instead of a full multiple-particle simulation we can propagate the statistical properties of the beam down
the beamline, such as its various statistical moments. Of course such an approach does not provide as
much information as a multiple-particle simulation, however, it is computationally much less expensive.
The approach is that taken by the simulation codes TRANSPORT [2] and TRACE3D [5]. The current note
describes this type of simulation technique in some detail, in particular, the beam physics background,
computation of the self-force effects on the dynamics (i.e., space charge effects), and numerical
approaches.

It is our intention to describe in some detail the theory and technique for simulation of particle beam
envelopes. We hope that this unified presentation will serve as a collective documentation for such
techniques that are already in common practice. By fully documenting both the theory and numerical
techniques one can more readily develop extensions to the theory and techniques and draw conclusions
toward the validity of the resulting simulations. For example, we could extend the theory here to include
noise from machine errors, or use the theory included here to determine which regimes the simulations are
most accurate. Because our interests are primarily in the control and automation of accelerator systems, it
is important to us that we have a clear understanding of the simulation techniques being employed to
develop robust control applications. The techniques presented here are fast. Thus, not only are they useful
for off-line accelerator system design, they are also valuable for presenting on-line model references for
developing control applications.

Although we cover the theory and technique of beam envelope simulation in detail, we mention
nothing about how one might actually implement such a simulation engine. In a companion article we
present a modern software architecture for performing these simulations [16]. This architecture has already
been implemented and is in current use, embedded into the high-level control system for the Spallation
Neutron Source (SNS) accelerator.

1.1. Overview

We begin with the equations of motion for single particle trajectory under Lorentz forces. These
equations are tailored to beam physics by using the path length along the design trajectory as the
independent variable, rather than time. By employing Liouville's theorem we find it possible to derive
evolution equations for the beam ensemble’'s moments from the equations for single particle motion. There
are two unresolved terms in these equations, both determining the effects of the beam's self fields on the
moment dynamics. Specifically, they are the cross-moments of the self electric field and the phase
coordinates. If we assume that the beam has ellipsoidal symmetry in configuration space, it is possible to
compute one of these moments analytically in terms of elliptic integrals (the moment involving the spatial
coordinate). Upon computing this moment we find that it depends only weakly on the actual profile of the
ellipsoidal distribution. Acknowledging this fact we typically model all laboratory beams with an
equivalent uniform beam having the same second moments; the uniform beam is preferred since it has
well-defined boundaries. From there we take two different approaches in the description of the statistical
evolution of the beam.

From the moment equations we can derive a convenient set of equations that describe the behavior of
the rms beam envelopes (assuming a centered beam). We avoid the remaining unknown field moment by
introducing the definition of rms emittance in the equation set. By doing so, however, we implicitly make
the assumption that the rms emittance is either constant or it is a function whose values are known a priori.
This assumption is usually not too restrictive, since it is known that rms emittances are invariants of the
motion if all forces on the beam are linear. The resulting set of equations for rms envelopes can also be
rewritten for the equivalent uniform beam, and is usually seen that way in the literature. They form a
convenient closed set of equations for studying beam dynamics. However, as pointed out they cannot be
used to study nonlinear effects acting on the beam.

The alternate approach to developing a description of the beam's statistical evolution is through the use
of transfer matrices. While the previous approach results in a set of coupled ordinary equations that are
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continuous in nature, this technique is more of a discrete approach. Generally, the continuous
representation is most convenient for analytic study while the discrete representation is well suited for
computer simulation. The transfer matrix technique is based upon the observation that whenever all forces
on a particle are linear, multiplying the particle's coordinate vector by a matrix can represent the action of
any beamline element. This matrix is determined by the properties of the element and is called the transfer
matrix for the element. If we represent all the second-order moments of the beam by a symmetric matrix,
then the effects of the element on these statistical quantities can be determined by a transpose conjugation
with the transfer matrix. This technique is easy to implement on a computer. A transfer matrix can also be
used to model the action the beam's space charge if we use a linear fit to the self electric field of the beam.
We do this by employing a weighted linear regression, where the weighting factor is the beam distribution.
This gives us a fit that is more accurate in regions of higher beam density. It turns out that this field
approximation also conforms to the assumption of constant rms emittance, as done in the previous
description of the beam dynamics. So we essentially have an equivalent representation as before, only the
beam is propagated discretely with transfer matrices.

1.2. Outline

In Section 2 we review the basic physics background necessary for this analysis. Mostly this entails
placing the common physical concepts in the context of accelerator physics. In particular we cover the
design trajectory, phase space, and the equations of motion for an accelerator system. Section 3 introduces
the basic statistical concepts on which we rely for our simulation technique. There we show how to
transform the equations of motion for individual particles into evolution equations for statistical properties
of the beam. Section 4 describes quantities and parameters particular to particle beam physics. The most
important of these concepts is probably the rms envelopes and the Courant-Snyder parameters for
describing the phase space distribution of the beam. We also cover the mean value vector and the
covariance matrix, convenient methods for representing the statistical properties of the beam. Ellipsoidal
beams are treated in Section 5, that is, beam distributions having ellipsoidal symmetry. Specifically, we
compute the space charge effects for ellipsoidal beams. We see that it is possible to determine the effects
of the self-forces analytically in terms of elliptic integrals for distributions having ellipsoidal symmetry in
configuration space. Sections 6 and 7 cover simulation techniques for bunched beams with ellipsoidal
symmetry. Section 6 treats the envelope equations for bunched beams where we develop the coupled set of
ordinary differential equations describing the evolution of the equivalent uniform beam. Section 7 presents
the transfer matrix approach to bunched beam envelope simulation. This technique, although somewhat
less obvious, is more suited to numerical simulation and is also more general than the envelope equation
approach as it can treat coupling between the phase planes. Finally we conclude with Section 8 and present
some transfer matrices for common beamline elements in Appendix A.

2. PHYSsICS BACKGROUND

Here we present the basic physics
background  for  our  analysis.
Ultimately, we develop the equations
of motion for individual beam particles
and we do so in a form suitable for
beam physics. We also touch upon the
various  unit  conversions  and
conventions used in the beam physics
literature.

synchronous particle

2.1. The Design Trajectory

We shall assume a beam transport
or accelerator system that has a
specified design trajectory. This
configuration is shown in Figure 1. Figure 1: design trajectory and coordinate system
The distance along this design
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trajectory is given by the independent variable s. There also exists the synchronous particle, which has a
specified design velocity v(s) at each point s on the design trajectory. The relative velocity g=v/c and
relativistic parameter y=1/(1-4)"? are always given with respect to this design velocity, unless otherwise
noted. With respect to the synchronous particle, we construct a system of coordinates (x,y,z), that is, the
synchronous particle is at the origin. The coordinates x,y,z represent displacements from the synchronous
particle in the x, y, z directions, respectively. Locally, the z-coordinate is always aligned with the design
trajectory. Specifically, the tangent vector of the design trajectory always points in the z-direction. Thus,
the xy-plane represents the transverse plane while the z-direction is the longitudinal direction of beam
propagation (in a local sense). Note that the coordinates (x,y,z) are not the inertial frame of the beam, they
are laboratory coordinates that follow the beam.

2.2. Phase Space

We form the phase space (or state space) of the particle by considering the normalized momenta
(x',y",z") with respect to the synchronous particle. Let p(s)=ymv(s) represent the momentum magnitude of
the synchronous particle. Then the x and y plane relative momentum x' and y' are given by

20X _ Py X

ds p yms’

@ .
'Eﬂ:&:m

ds p ms’

where the over dot denotes differentiation with respect to time. For the z plane the situation is different
since the coordinate z is defined to be the difference in longitudinal position from the synchronous particle,
which is traveling at velocity v. Therefore,

, dz . Az . AVAt . AvV(As/v)
Z'=—= lim — = lim = lim
%) ds As>0AS  As—>0 AS As—0 AS
‘ a1
Vv )/2 p,

where Av is the difference in velocity v of the synchronous particle, Ap is the difference in longitudinal
momentum p of the synchronous particle, and the last equality comes from relativistic mechanics (see
below). Thus, the complete phase space coordinates for a particle at location s is given by (x,x',y,y',z,2";s).
For conciseness, it is convenient to denote points in phase space by the vector z. That is,

3) z=(x,x",y,y¥,2,2").

This coordinate space, specifically with the normalized momenta x', y', and z', is also commonly called
trace space in the literature.

2.3. The Longitudinal Phase Plane

Since the z phase plane has several different descriptions in the literature, we shall consider it in more
detail. There are several different coordinate systems commonly used to describe this phase plane.
Because we are considering position and momentum in the direction of propagation it is necessary to
consider relativistic effects when converting between these descriptions. The following equations relate
differential changes in common relativistic parameters:

dy = Brdp,
@ d(B)=rds
dW =mc?dy = Sy°mc2dg,

where W is the kinetic energy of the particle given by (51)mc?.
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Commonly used coordinates used in lieu of z are Ag and At. The coordinate A¢ is the RF phase
difference from the synchronous particle, while At is the difference in arrival time from the synchronous
particle. To convert from Agin degrees, or At in seconds, to z in meters use the following formulae:

ST A gAY
(5) 2=V 360~ 360"
=—At(v+ Av) = - ScAt(1+2"),

where T is the period of the RF and A is the free-space wavelength of the RF. Note that negative values of
A¢ indicate a phase difference ahead of the synchronous particle while negative values for At indicate
arrival times before the synchronous particle.

Coordinates that alternately describe z' are Ap/p and AW. The quantity Ap is the difference in
momentum from the synchronous particle so that Ap/p is the normalized difference in momentum.
Likewise, AW is the difference in kinetic energy from the synchronous particle. To convert from Ap/p in
radians or AW in electron volts (Joules) to z' in radians use the relation

z':izA—;),
Y
6
© S 1 AW
yr+) W
where W is the beam's kinetic energy. These relations follow from the facts that

Ap=mcA(S)=y’mcAB=p/A(ABlS) and AW=mc?A =/ ymc*(Ap/p).

2.4. Equations of Motion

Newton's second law gives the equations of motion for individual particles of the beam. We shall
make all our calculations in the laboratory frame. Recall that the coordinates (x,y,z) are actually the
displacements from the synchronous particle on the design trajectory. In our case the familiar F=dp/dt
appears as

d(ymv) d
F=—C"0 = o (ymy)
7 dt ds

:ﬁzmczr”"rﬁzmcz(x’,y’,Z/"rl)(:j—}/
S

where F is the force on a particle, y is the relativistic factor, m is the particle mass, c is the speed of light,
p=vic where v is velocity of the synchronous particle along s, r=(x,y,s+z) is the position vector, and the
primes indicate differentiation with respect to s. To derive the second line of the above note that the
velocity vector can be expressed as v=£c(x',y',z'+1). The second term of that equation is nonzero only
when particles are accelerated. Many times we can assume that the quantity y is negligible, for example in
transport systems or between RF gaps.

The Lorentz force law containing all the electromagnetic fields gives the forces F on a beam particle.
We decompose the force vector F into the superposition of the applied external forces F, and the self-forces
F, caused by the electromagnetic fields of the beam itself. The applied forces are assumed to be linear by
design, since it is known that nonlinear forces can degrade beam quality. Thus,

(8) Fa = _K(S) r,
where K=(xx(S),x;(S),k(S)) represents the action of external beamline components. For example, the
focusing force in the x-direction applied by a magnetic quadrupole lens is given by
aB, (0)
OX

(9) Fax =-0%

X,

where B, is the y-directed magnetic field. Thus, x=q/4c[0B,/0X].
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The self-forces F, are the electromagnetic fields produced by the beam itself. We have
(10)  F, =qE((r,s)+q[r'+a,]xBy(r,s),

where E; is the self electric field, B, is the self magnetic field, and a, is the unit vector in the direction of
the design trajectory (i.e., it points in the z-direction). The individual velocities around the synchronous
particle, given by r', is typically negligible compared to the collective motion of the bunch. Consequently
we drop the r'. This action leads to magnetic self-fields that are directly proportional to the electric self-
fields in the perpendicular direction. The reason for this situation is that the collective motion along the
design trajectory produces the magnetic fields. (Forces from longitudinal magnetic fields will be zero by
the cross product.) We have

(11) Bngaszs,

where B is the magnetic field perpendicular to a,. Consequently, the perpendicular force has the form
F,=(1-/)E,, where E, is the perpendicular self electric field. The parallel self-force depends only on the
parallel self electric field. Collecting these results, the forces in all three directions can be written

Fy = —&, (S)X +i2EX(x, Y, 2;8),
/4

(12) Fy, = —Ky(s)y+7i2Ey(x, Y,Z;5),
F, =—«,(s)z+0E,(X,Y,2;9).

The resulting equations of motion for a beam particle are

’

w, Vo Ky q
X"+ —x"+ X = E,.
¥ }/m02ﬂ2 }/SmCZﬁZ X
" }/, ’ Ky q
(13) y'+=y'+ y= E.,
y }/mCZIBZ ySmCZﬂZ y
z"+7—z’+%z=—7—+ cl > E,.
/4 ymce g Yy ymcep

Now we simplify the equations with some standard definitions. First, let

(14) kiEK—“ where ae{x,vy,z},

yme? g2

which are the linear proportionality constants for the external focusing. We further reduce the above
equation set by introducing a standard parameter in beam physics, the beam perveance K. This is a
measure of the space-charge effect and we define it as

N 1 9

15 K=s—— —,
(15) 275 1% % mc?

where g is the permittivity of free space and N is the total number of particles in the beam bunch. This
definition is somewhat different than that of other authors [21][22]; it is more useful for the present
discussion. Unfortunately, there is no standard definition for the bunched beam perveance, as there is for
continuous beams. The resulting equations of motion are
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X"+ L 1 k2x = K%EX,
Y aN

”n }/, ’ 2 27[80
16 +—y'+kyy=K
(16) y » y'+kyy o

E,,

’ ’ 2
2+ Lk =Ty 2k g
Y aN

Note that gN is the total charge of the beam bunch, usually denoted by Q. It can also be expressed in terms
of the bunched beam current | as

an  Q=1I/f,

where f is the drive frequency of the RF cavity.

3. STATISTICS BACKGROUND

3.1. The Density Function

Assume that the particle beam can be described by a density distribution function f of the particles'
phase space coordinates (x, X', y, ¥', z, ) and position along the design trajectory s. That is, the entire
ensemble of beam particles is represented by the function f. The function f describes the distribution of the
beam's mass (or charge) in phase space at each location s along the beamline. It can also be interpreted as a
probably density function characterizing the probability that any particle occupies a particular region of
phase space at location s. Thus, the probably that a particle lies in the infinitesimal phase space volume
dxdx'dydy'dzdz' centered at (x, X', y, ¥', Z, z') and located at position s along the beamline is

(18) f(x,x",y,y',z,2";s)dxdx"dydy' dzdz' .

Typically we assume that the particle ensemble is populous enough to be represented accurately by a
continuous f. However, it is always possible to formulate a discrete ensemble by assuming that f is a
summation of displaced Dirac delta functions. Finally, note that the function f(x,x',y,y',z,2';s) contains all
the information of the beam but requires an enormous amount of storage space to represent on a computer,
it is a function of seven independent variables.

The evolution of the function f is governed by the Vlasov equation, which incorporates the equations
of motion and the Lorentz force equation. It is a partial differential equation containing partial derivatives
of all seven independent variables and is typically intractable to solve in general. We shall avoid the
Vlasov equation by propagating only a small subset of the distribution's moments. For this we require only
the equations of motion and Liouville's theorem.

3.2. Liouville's Theorem

Liouville's theorem states that the total derivate of f with respect to s along particle trajectories is zero,
or formally

d . : :
(19) & fx(s),x'(s), y(s), y'(s),2(s),2'(s);s] = 0.
Note that this is a convective derivative that follows the particle trajectory. The fully expanded derivative
is
(20) ﬂx#ﬂxuﬂy’+ﬂy"+ﬂz'+iz”+ﬂ:0,
OX ox' oy oy’ 0z oz’ 0s
where x"=dx'/ds, etc.

This is essentially a statement of the conservation of mass. The practical considerations where the
theorem holds true are for collisionless systems where there are ample enough particles such that the self-
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fields are represented accurately by smooth functions. That is, there is no "graininess" of individual
particles; the distribution behaves much like a fluid. Otherwise, Liouville's theorem is true only for
distribution functions on 6N dimensional phase space, where N is the number of particles.

We mention in passing that by substituting the Lorentz force laws for x", y", and z" in the above we
obtain the Vlasov equation. Thus, the trajectories {z(s)} where the above holds actually represent the
characteristic lines of the Vlasov equation.

3.3. Moments of the Distribution

Moments of the distribution are function averages on phase space, weighted with respect to the
distribution function. For example, let g(x, X', y, ¥', z, ') be some arbitrary function on phase space, then
the moment of g, denoted (g), is given by

(g)= ij. g(x, Xy, Y, 2,2) f(x,X',y,y',2,2';s) dxdx' dydy' dzdz',
(21) N

:%J.g(z)f(z)dez,
where
22 N :j f(z:5)d°z,

is the total number of particles in the ensemble and where the integrations are taken over all of phase space.
(In mathematical parlance, we treat f as a measure on phase space.) Note that with this definition (g) is still
a function of s because f is a function of s. We shall be concerned foremost with the moments of phase
space monomials, that is, moments of the form (x), (x"), (x?), (xx'), (x'?) and their counterparts for the other
phase space coordinates. Theses moments represent the evolution of the beam's statistics, in particular the
center of mass (average position and velocity) and the rms envelopes of the beam.

Notice also that in the above definition (-) is normalized. It is normalized by the total number of
particles, a factor 1/N, so that the moment of 1 is 1, that is (1)=1.

3.4. Moment Equations

Liouville's theorem enables us to formulate evolution equations for the moments of the beam.
Specifically it allows the moment operator {-) and the differentiation operator d-/ds to commute. For
example, if g(z;s) is a function of the phase space coordinates and s, then the derivative of (g) with respect
to s is given as

’

_i _ii . . 6 _i 7 . . e 6
oy (9 =0 gy Jemat@dtz -G le @ f @ s gmaf @,
=(9)
Thus, we are able to move differentiation with respect to s within the moment operator and vice-versa.

Now we may average the equations of motion with respect to the beam ensemble then employ
Liouville's theorem to commute the differentiations with respect to s. In the x-plane, we have for the first
moments

(24) '

The quantity (E,) is zero for symmetric charge distributions by pair-wise cancellation. Since we assume
that the beam has an ellipsoidally symmetric charge distribution in the sequel, we neglect this term. We
then have the following equations for the first-order moments:

10
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(25) ' ! ' 4 ' 4

() =i =20x) (y) =G -Tly) () =i () - T[]

Y Y v

Notice that the above equations are independent of the self-fields and represent the equations of motion
for the beam's center of mass; they form a complete set. Thus, these equations may be propagated
independently. To simplify the analysis in what follows, we often assume a centered beam to make
computations easier. We can then displace this centered beam according to the above equations describing
the centroid motion.

Now consider the second-order moments of the form (x?), (xx'), (x?. Proceeding as before, the
equations for the x-plane moments are

<x2>’ = <(x2)’> = 2(xx')
(26) (xx')l = <x’2>+(xx”> =<x’2>—77,(xx’>—kf<x2>+ K 2::,\810 (XE,)
<x’2> =2(xx") = —2kf(xx’)—2%<x’2>+ 2K 2;;‘) (XEy)

There exist similar equations for the y moments. The z second moment equations are

<22>’ =2(z2)

N , ", 27
@7 () :<z 2>—L(zz)—kf<22>—L(z)+y2Kq—’j°(zEz>

v 7
,2'__ 2/05N L’ 2\ 7_’ , 2, 27Eg
<z >— 2k; (zz2') 27<z > 2y<z>+27 K N (zE,)

In general we may also have cross moments of the form (xy), (X'y), (xy"), and (x'y"). The cross moments
would typically result from bending magnets or misaligned beamline elements.

From this point two differing approaches to simulation are typically employed: 1) we use the second-
order moment equations to develop a set of ordinary differential equations describing the rms envelopes of
the beam, this technique is covered in Section 6. 2) We propagate the entire set of second-order moments
in the form of a symmetric correlation matrix, this technique is covered in Section 7. The later approach is
more general than the former, since it can treat rotated ellipsoids and external coupling between phase
planes.

4. BEAM PHYSICS

In this section we outline quantities and concepts that are particular to beam physics. Specifically, we
cover rms envelopes, rms emittance, and the rms phase space ellipse. =~ We also consider a linear
approximation to the self-fields that is particularly important for beam physics calculations.

4.1. The RMS Envelopes

Here we introduce the notion of rms beam envelopes, which is fundamental in much of the beam
physics literature. The rms envelopes of a beam represent the boundary of the beam in a collective, or
statistical sense. As we see in the sequel, for ellipsoidally symmetric beams this statistical behavior is
almost independent of the actual profile of the beam distribution. That is, the rms envelopes of many
beams behave the same regardless of the actual distribution.

First, let us consider the mean values of the particle distribution. We use X,y, Z to denote theses first-
order spatial moments, that is

11
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(28) X =(x), y=(y), 7=(z).

These values are the positions of the center of mass in the x, y, and z directions, respectively. That is, they
are the coordinates of the beam centroid.

Now we consider the rms envelopes of the beam. To do so we first introduce the following

definitions:
5 E<X2>1/2 ,
@ y=(y)"

1§

1/2
7 E<22> .

In the literature these quantities are commonly referred to as the rms envelopes of the beam. It is important
to point out that this is only true for a centered beam. The true rms envelopes of a beam are actually the
standard deviations of the density distribution f. Denoting the standard deviations in the x, y, and z
directions as &, oy, o, respectively, they are defined

=) )]
A (Y
S R

or
—o  _oJu2 —>  _o2 —o o2
(31) axz[x —x]l : ayz[y —y}l , ozz[z —z]1 .
Note that when the beam is centered, that is whenX = ¥ =Z =0, the rms envelopes ¢, oy, o; are equal to

the quantities X, Y, Z . This is the situation most often encountered in the literature. Typically a centered

beam is assumed to simplify computations, particularly for the moments (xE,), (YE,), and (zE,). A common
approximation in simulation is the assumption that the beam is centered when computing the evolution of

the second moments X, Yy, Z ; the offsets X,¥,Z are computed independently to form the complete beam
state.

4.2. RMS Emittance

One particularly important quantity in beam physics is the rms emittance, usually denoted & . This is a
figure of merit indicating the area in each phase plane that the rms beam envelope occupies. The rms
emittance is a function of the second moments, for each phase plane it is defined

g = [<x2><x’2>—(xx'>2]l/2 ,
(2 & [<y2><y’2>—(yy')2]1/2,

g, = [<22><z’2>—(zz’)2]1/2.
It is known that whenever all forces acting on the beam are linear and there is no acceleration, the rms
emittance is an invariant of the motion [7][10][12]. An increasing emittance is usually indicative of a loss

in beam quality. Thus, the rms emittance of a beam typically increases whenever unwanted nonlinear
forces are encountered.

When the beam is accelerated the transverse rms emittances always decrease. This condition is simply
an artifact of the definitions of x' and y' and does not imply any decrease in random transverse Kinetic

12
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energy (temperature). Since x'=p,/p, it decreases with increasing longitudinal momentum p, which in turn
decreases the rms emittance. To see this consider the x phase plane and assume that the self-fields can be
represented as the linear function E,=ax, where a is a real number. Now simply differentiate the definition
of rms emittance

%EX = <x2>'<x'2> + <x2><x’2>, - 2<xx’><xx'>' ,

where the second line is obtained by substituting the derivatives from Eqs. (26). The solution to this
equation is

52
34 ()=
7°(s)
where &, ,is the initial value. Thus, we can see outright that when the beam energy increases the

transverse rms emittances decrease. Applying the same procedures to the longitudinal plane we get a
different equation

d - ! - ’ ,
(35) Esf = —277522 + 277<z>(zz ).

Thus, if the RF phase is misaligned during acceleration, causing a nonzero (z), it is actually possible to
experience emittance growth in the longitudinal plane.

To alleviate the situation of decreasing transverse emittances with acceleration we may alternately use
the normalized rms emittances, typically denoted &, . These emittances are defined as [21]

(36) gn,x Eﬂ?’gx ) gn,y Eﬂ?’gy, gn,z = ﬁ}/Ez :

Performing a similar analysis as with the rms emittances using similar assumptions, we find that the
normalized rms transverse emittances behave as

(37) gn,x (S) :ﬂ(s) gn,x,O'

where &, , ,is an arbitrary constant. Thus, the transverse normalized rms emittances actually increase with
increasing beam energy. However, once the beam velocity approaches ¢ these emittances level off with
increasing beam energy.

In our phase space coordinates the units of rms emittance are meter-radians. However, recalling that
there are several alternate coordinate systems for the z phase plane, it is common to find emittance values
for this plane given in several different units. When the z phase plane coordinates are (z,Ap/p) the units are
meter-radians. When the coordinates are (Ag,AW) the units are degrees-electron volts. Finally, when the
coordinates are (At, AW) the units are seconds-electron volts. To convert between theses units to meter-
radians we substitute the coordinate conversion formulas (5) and (6) into the above definition for &,. The

results are
g, (m—-rad)=C,, & (m-rad),
(38) = Cdeg Ez (deg-eV),
=Cgy &, (sEC—8V),

where the conversion factors C,p, Cgeg and Cec are defined
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(30) 7 R ) 1 1 {m—rad],

C =1 — =
%9 7360 y(y +1) W 360 2 [,2 1 Ep | deg—eV

y 1 1 c (m-rad
7+1W \/yz—lER sec—eV )’

Coec =

where Eg=mc?/q is the rest energy of the beam particles in electron volts. Note that the beam energy W
must also be given in electron-volts.

4.3. Courant-Snyder Parameters for the RMS Ellipse

When modeling beam distributions, the projections of the distributions onto each phase plane are
represented ideally by an ellipse. Here we introduce the Courant-Snyder, or Twiss, parameters often found
in the literature. These parameters describe the projections of the beam distribution onto the phase space
planes. In particular, we shall describe the ellipse relating to the second-order moments of the beam (the
rms moments). This ellipse is congruent to the phase space ellipse of the equivalent uniform beam. To
make explicit calculations we consider the x phase plane with the coordinates (x,x'). There are analogous
results for the y and z phase planes.

Consider an ellipse centered in x phase space as shown in X’
Figure 2. The general equation for such an ellipse can be
expressed

(40)  y, X2 +2a, X'+ B X% =E,,

where a, S % are known as the Courant-Snyder parameters for
the x phase plane. These parameters are not independent; they
are related through the equation

(41) ﬁx7x_ax2 =1.

This relation enforces the area enclosed by the ellipse to be 7z, .

It is our desire to relate this ellipse to the rms quantities of the
beam distribution.

Figure 2: rms phase space ellipse

We can solve Eq. (40) for particular values of x and x' in the phase space as shown in Figure 2 (for
example, see [21] and [22]). Consider the projections of this ellipse onto the x and x' axes. We want the
maximum extent of these projections to be equal to the rms quantities for x and x', respectively. This
condition leads to the definitions

Byéx E<X2>l/21
(42) a,ey = —(xx'),
mz<x'2>1/2,

where the second equation follows from Eq. (41) and the definition of rms emittance (32).

If the coordinates for the longitudinal phase plane are given as (A#,AW), the conversion of the Courant-
Snyder parameters to the (z,z") units is given by the following:

14
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a, (nounits) = ¢z, (nounits),

(43) B, (mirad) :%@WT B, (degleV),
¥, (rad/m) =%ﬁwi v, (eV/deg),

where, due to an unfortunate choice of notation, we have gs and s representing both relativistic
parameters and Courant-Snyder parameters. The grouping of terms was chosen to make the context clear.
When the longitudinal coordinates are given as (z,Ap/p), the conversion of the Courant-Snyder parameters
to (z,2") units is

a, (nounits) = , (nounits),

(44) B, (mirad) = % B, (mirad),

7, (rad/m) = iz 7, (rad/m),
4

When the longitudinal coordinates are given as (At,AW), the conversion of the Courant-Snyder parameters
to the (z,2') units is given by

a, (nounits) = a, (nounits),

(45) S, (mirad) = fcW r+1 S, (sec/eV),
v

1 y 1
rad/m) = ————y_ (secdeg).
74( ) 57 1W 72 ( )

4.4. The Mean Value Vector and Correlation Matrix

Here we introduce the mean-value vector z and symmetric 6x6 correlation matrix . These quantities
contain the state of the beam statistics up to second order. Maintaining consistency with previous notation,
let the moments (x"), (y’), and (z’) be denoted
(46) TE<X'> 7’5<y’> and TE<Z'>,
respectively. We accordingly denote the vector of first-order moments as
Z=(7),
w270 T

=-x x yvy z 7)),

where the superscript T indicates transposition. Thus, z is the column vector of mean values for the phase
space coordinates. Note that z can be a function of the path length parameter s.

When propagating the second-order moment down the beam line it is convenient to work with a matrix
whose elements are the second-order moments, denoted o. Taking the moment of zz', which is a
symmetric matrix, forms . For example, considering only the x phase plane whose coordinates are
represented by the vector

(48)  x(s)=(x(s) X(s))".

The matrix we are describing is given as (xx"), a sub-matrix of o, which we denote by o,,. That is

(49) O E<xxT>: Eixz <<:f(2>> :
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The matrix o is known as the correlation matrix of the x phase plane. We have one such 2x2 matrix for
each phase plane, plus we have matrices containing the cross-correlations between phase planes such as
(xy"), (xz"), and (yz"). The full second-order moment matrix o has the block matrix form

c
(50) 6= <zzT > =|o
c

where each o,g is a 2x2 symmetric matrix. By symmetry we must have c4s=0p,. When the motion is not
coupled between phase planes planes, ¢ has the simplified block-diagonal form

o, O 0
(51) 6= 0 o, 0|,
0 0 o

7z

where 0 is the 2x2 zero matrix. Thus, coupling between phase planes is manifested by nonzero values for
the sub-matrices oy, Gy;, OF Oy,.

The vector z and matrix o represent all the moments up to order two at each position s along the beam
line. Thus, the pair (z,o) contains the complete state of the beam's statistical behavior up to order two.
This is a convenient representation for the beam statistics when doing simulation.

The correlation matrix can be expressed in terms of the Courant-Snyder parameters. Referring to Egs.
(42), the o matrix for the x phase plane can be written

(52) o :(ﬂxgx _axngzi(yx ax]_l

—OyEy Vx€x &y \Ox :Bx

There are, of course, analogous representations for the y and z phase planes. Using the above fact we can
write Eq. (40) for the rms phase space ellipse compactly in matrix-vector notation as

(53) x' O';lX =1.

4.5. Linearization of the Self-Fields

It has been found that the evolution of the beam's second moments is determined primarily by the
linear part of the forces [19]. The nonlinear parts are usually associated with emittance growth of the beam
(see Section 4.1). In this analysis we consider only linear forces. We have already assumed that the
external forces are linear according to machine design. The self-fields will, in general, have nonlinear
components and, thus, the self-forces also will. Here we describe a linear approximation to the self-fields
Ex Ey, E; which is appropriate for our analysis.

Consider the self-field in the x-direction, E,. We begin by assuming an expansion of the form
(54) E,(x) =a, +a;x.
where gy and a; are real numbers independent of x. Terms involving the other phase space coordinates (of
the form byy, c,z) are zero with the assumption of symmetry (see Section 5.1). One method of determining
the coefficients a, and a; is by a minimum variance, or least squares, estimation technique [6][15]. Here
we seek to minimize the norm of the error in the approximation, which is ||E - ao - a;X||, Ex being the actual

self-field. In order that the expansion be most accurate in areas of higher beam concentration, we choose
the norm ||-|| to be

5 lol=[[o'@i@aat] ()"
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It is easily checked that this is a valid norm for functions of the phase space coordinates. Using the least
squares fitting technique, we are left with the following Gram system for the coefficients:

o [ @)%

The solution to this system is

(57) a, =—L2<XEX>, a =i2<xEx>,

Ox Ox

however, this can be reduced with some practical considerations.

Since we only use this expansion for space charge effects, we may as well assume that the beam is
centered. This action is equivalent to a simple coordinate translation, which does not affect the shape of the
electric field and, therefore, the moment (xE,). When the beam is centered (i.e., when X =y =7 =0and

o, = X ) the values of the expansion coefficients are

(58) a,=0 and a, = (Es) .

()

Thus, in this case
(59) E, ~a;X.

We have analogous expressions for E, and E, so that all the field components have the following linear
approximations:

(60) E (Ex) Eyz<yEy> E <ZEZ>z.

~ X1 y1
- () )
Note once again that these linear approximations to the true fields are most accurate in the regions of
highest beam density. They are most useful when considering the collective behavior, or rms behavior, of

the beam.

4.6. Tune Depression

To demonstrate the usefulness of the material in the previous section we digress somewhat to show
how it is related to a common parameter in beam physics known as the tune depression 7. Tune depression
is a parameter indicating the relative effect of space charge compared to the effects of transverse focusing
in a beam channel. To illustrate, return to the original equations of motion (16) for an individual particle.
Employing the linear approximation to the self-field given by Eqg. (59), the approximate equation of motion
in the x-plane is

61) x"+Lx+ kf—K2ﬂg0 a; [x=0.
Y aN

The square root of the quantity in parenthesis is known as the tune-depressed phase advance, or phase
advance with space charge and is typically denoted k in the literature. The quantity k, in the above is called
the phase advance without space charge and is usually denoted k,. We see that an immediate consequence
of space charge is the reduction of external focusing. Consequently, the frequency of the particles' betatron
oscillations, or betatron tune, decreases with increasing space charge forces.

Tune depression 7 is defined
(62) n=k/k.
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It is the factor by which the betatron tune frequency is decreased, having a maximum value of 1 (no tune
depression) and a minimum value approaching 0 (complete tune depression). Using the above expansion
we find the tune depression (in the x plane) to be

1/2 1/2
6 g-|1-KZOEN |y g (€
o )| ]

From the above relation we see that the tune depression is a function of the self-fields, the beam energy,
and the external fields.

5. ELLIPSOIDAL BEAMS AND THE EQUIVALENT UNIFORM BEAM

Here we define and describe ellipsoidal beams. For these beams it is possible to compute the field
moments (XE,), (YE,), (zE,) analytically in terms of elliptical integrals. The results of these calculations
lead to the concept of the equivalent uniform beam. This notion says that we may model any (ellipsoidal)
beam, at least approximately, by a uniform density beam with the same second moments.

5.1. Ellipsoidally Symmetric Charge
Distributions

We restrict our attention to ensemble distributions
that are ellipsoidally symmetric in configuration space,
that is, in (x,y,z) space. For simplicity we assume an
upright, centered ellipsoid at the origin. For an arbitrarily
oriented ellipsoid we can always apply a change of
coordinates to achieve this condition. In this situation the
charge density p(x,y,z) has the form

2 y2 72
(64) p(xy,2)=qF a_z ot Figure 3: reference ellipsoid for ellipsoidally symmetric
charge density

where q is the unit charge, and a, b, ¢ represent the semi-
axes of the reference ellipsoid in the X, y, z directions respectively. The function F(-) represents the profile
of the distribution and is related to the density function f by

(65) F(x,y,z;S)EUIf(x,X’,y,y',z,z’;s)dx’dy'dz',

that is, we have integrated out the momentum dependence. This situation is depicted in Figure 3.

We compute the spatial moments of this distribution in order to find a relation between the moments,
the total number of particles, and the semi-axes a, b, c. For example, the total number of particles N is

2 2 2
X° y° oz
66 N = F| —+ -~ +— (dxdydz .
( ) j.[j (az b2 CZ Jd y
This integral may be computed by using the change of coordinates

X =arsingcosg,
(67) y =brsinésing, dxdydz = abc r? sinadrdad ¢,
Z=crcosé,

with the result
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. ® o, 2
(68) N _47zabcj0 reF(r°)dr,

where F, is the n' moment of F, defined as
69) F, Ej:s”F(s) ds .

Note that n is not restricted to integer values. Using a similar approach we can compute the following
moments of the ellipsoidal distribution:

(1) =1,
) ={n)=(z)=0,

(70) <x2> 3" Fap

3 Fuyp

_b* Ry

i v
2 F

<22>:%$.

These equations provide us expressions of the semi-axes a, b, ¢ in terms of the second spatial moments (x?),
(Y%, (z%), respectively.

5.2. Computation of the Field Moments

It is possible to compute the field moments explicitly (in terms of elliptic integrals) for beams having
ellipsoidal symmetry in configuration space. We start from the following formula for the self-electric
potential of such a bunch [9][13]:

gabc F(s)

4g, .[o .[T(x,y,z;t) (t + az)u2 (t + b2)1/2 (t + C2)1/2

where the limit of integration T(x,y,z;t) is defined

(71) #(X,y,2) = dsdt,

. X2 y2 Z2
(72) T(X,y,z;t) t+a2+t+b2+t+c2'
The formula assumes that the bunch is centered at the (x,y,z) origin. It is found by inverting Laplace's
equation for ¢ in ellipsoidal coordinates (the variable t is actually an ellipsoidal coordinate). Using Eq. (71)
the expressions for the field moments are computed to be (see Appendix A)

212 .2
(xE,) = T(F) 222D 22 R, (c? b?,2?),
6ey N J'OO
21,22 G(r)=| F(s)ds,
(3 (yE,)= TR A2 bRy (a2, b7), r
& o0
. (P =] 6*(r*)dr,
gz a‘h’c” 2 12 .2 0
<ZEZ>:F(F) c“Rp(a®,b%,c),
6¢g

where T carries the distribution information (it is a function of the profile F), and Rp, is the Carlson elliptic
integral of the second kind [3][4].

Carlson’s definitions for elliptic integrals are much more convenient in this situation. Moreover, they
lend themselves nicely to numeric computation [17]. Definitions for these integrals are as follows:
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Re(x,y,2) =2 [ a
FAM T 2 Jo (t+x)l/2 (t+y)l/2 (t+z)l/2 !

3> dt
74 Rp(X,y,2)=— ,
(74) p(X,¥.2) ZIO (t+X)1/2 (t+y)l/2 (t+Z)3/2

EJ‘D‘J dt
200 (t+x)2 (t+y)"? (t+2)"2 (t+ p)

Note that only Rg is symmetric in its arguments. It is possible to express all the conventional elliptic
integrals (E, F, K, etc.) in terms of Rg, Rp and R;.

RJ (X7 Y.z, p) =

5.3. The Equivalent Uniform Beam

We would prefer to express Egs. (73) in a form independent of the parameters a, b, ¢. Rather we could
use the variables (x*), (y?), () by employing the relations (70). First note that

(75 Rp(xy.2)=r""Rp(,1y,r2)
for any positive real number r. Thus, choosing r=1/c* we have

1 a? b?
(76) RD(azvbz,Cz)=—3RD[—27—2,1]-
C (o C

Using this property of Rp we can express the self-moments as

<XE>:A(F) Q 1 R <y?> <22>1
B 2bmey <x25Y2 P ox2s ax2s |

A(F) Q 1 <x?> <z%>
77 E = R ’ 71 I
() V3 24mgy < y? 52 DL y2> <y®>

(ZEZ>—A(F) Q 1 RD{< x2> <y?> 1} |

V3 28meg <225Y2 V<25 <% >

where the functional A(F) is defined as

1/2
PR (rdr
(Fyp)"? L ]

(78) A(F)Eru:)(F:/’z)E_,/2 = |, &% (r*ydr = - —
UO r F(r)dr}

The functional A accounts for the effects of the particular beam distribution profile on the beam dynamics.
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Table 1: Ellipsoidally symmetric profiles F and the corresponding A(F). The quantity C represents an arbitrary constant.

Uniform C s<1 6 (3
— |==0.9295
0 s>1 5V5
Parabolic (Waterbag) C@l-s) s<1
-3 10 13 _0.9352
0 s>1 7N\N7
Hollow _ S
Cse 20° E\/E ~ 0.9462
d\rx
Gaussian _S 3
Ce 26° — ~0.9772
Vd

Sacherer discovered that the functional A is nearly constant with respect to the distribution F [19].
Table 1 lists the values of A for several common distributions. We see there that its value varies only by
about 5% for the distributions listed. The implication is that the second-order spatial moments (i.e., the rms
envelopes) of any bunched beam behave approximately the same, irrespective of the particular beam
profile. In other words, the beam dynamics are only loosely coupled to the actual form of the distribution,
so long as it is ellipsoidal. Consequently, we are justified in modeling any laboratory beam with any other
beam having the same second moments (x?), ¢y*) and (z%). This notion leads to the concept of the
equivalent uniform beam. This bean is the uniform density beam having the same second moment as the
actual laboratory beam. Since the uniform beam has well-defined boundaries, this distribution is typically
preferred. Finally, we note in passing that in the case of continuous elliptic beams, the dynamics are
completely independent of the beam profile.

Recognize that the semi-axes of the reference ellipsoid a, b, c, are actually the envelopes of the
uniform beam. This being so, we can use Egs. (70) to relate the envelopes of the uniform beam and the
second spatial moments. It is common in the literature to denote the envelopes of the equivalent uniform
beam by X, Y, Z corresponding to the semi-axes a, b, c, respectively. Thus, for the equivalent uniform
ellipsoid we have

79 X-= [5<x2>]1/2 =J5%x Y= [5<y2>]1/2 =J5y z= [5<22>]1/2 =57

Likewise, it is common to define the effective emittance ¢ of the equivalent uniform beam in terms of the
rms emittance according to the following:

(80) &, =5¢&, £y =5¢, &, =5z, .

The effective emittances represent the areas in the phase planes occupied by the equivalent uniform beam.

We can also determine the second-order moments of the equivalent uniform ellipsoid using their
definitions (79) and the definition of rms emittance (32). For the x-plane we find

2\ _1,>

<X >_5X '

r_l !

(81) (xx>_5xx,

where X'=dX/ds is the rate of change of the equivalent beam envelope with respect to s. There are
analogous relations for the other phase planes.
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The envelope X of the equivalent uniform ellipsoid can be expressed in terms of the Courant-
Snyder parameters through inspection of the extremal points of the trace-space ellipse (for example, see
Reiser [21]). The result is

X =./58:&x

82 X'= —ax\/g.
By

There are similar expressions for the y and z phase planes.

6. BUNCHED BEAM ENVELOPE EQUATIONS

The final result of this section is a set of coupled ordinary differential equations describing the
evolution of the equivalent uniform beam, given by Egs. (86). Although nonlinear, these equations are a
relatively simple set of ordinary differential equations that may be integrated numerically using standard
techniques. The shortcoming of this description is that, aside from space charge, it does not account for
external coupling between phase planes. That is, coupling such as that from misaligned quadrupoles, skew
elements, etc., cannot be modeled. This drawback is circumvented in the follow section on transfer matrix
methods by considering all the second-order moments.

6.1. Equations for Centroid Motion

The equations for the first-order moments are simply the equations of motion for the centroid of the
beam, which behaves as a single particle. The evolution equations for the average values are found with
reference to Egs. (25). By differentiating the first equation of each set in Egs. (25) then substituting into
the second we find

’
X"+ L% 1 k2% =0,

(83) y'+

which are a closed set involving only X,y,and z. They are damped harmonic equations and may be

solved independently by standard techniques. Recall that the k. are functions of s and that it is possible for
k.2 to be negative, that is, «, is negative.

6.2. Bunched Beam RMS Envelope Equations
Here we develop a set of coupled ordinary differential equations that describe the evolution of the rms
envelopes of the beam, specifically the quantities X,y,Z . These equations describe the behavior of the

beam extent in a statistical sense. They can then be used to derive the equations for the equivalent uniform
beam, as is done in the following subsection.

From the second-order moment equations (26) we can derive equations involving only the quantities
X,¥,Z . Recall that X =(x*)"*. If we differentiate X twice with respect to s then use the relations (26) and

the definition of rms emittance (32) we find a second-order differential equation for X . Proceeding in an
analogous manner for the y and z planes we are left with the following set of ordinary differential
equations:
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Note that these equations involve the moments (XE,), (yE,), (zE;). As we have seen, these moments are
generally functions of the X, Y, Z ; so the above set form a coupled set of ordinary differential equations.
Thus, once we determine the field moments we can solve the system using standard techniques (e.g.,
numerically). As they stand, these equations are valid for all beam distributions. In the next subsection we
consider ellipsoidally symmetric beam distributions.

6.3. Ellipsoidally Symmetric Beams and the Equivalent Uniform Beam

Here we substitute the values (XE,), (YE,), (zE,) that we calculated for beams with ellipsoidal symmetry
into the above rms envelope equations (84). The result is

2 =2 32 ~2
RrsLgakix - AELE Lo Vo 2a) Py,
v J3 12% X2 x| %
' (g2 52 7 z2
@)  gralyeky- MK L X2 5 o,
¥ V3 12§ y2 vyt ]y
' (52 =2 T =2 '
ARTAL N R RS I [ | I - 1
1% V3 123 179 7% | 17 7

These are the rms envelope equations for bunched beams with ellipsoidal symmetry.

Now consider the equivalent uniform beam. Substituting the value of A for the equivalent uniform
ellipsoid and using relations (79) and (80) we have

X"+ X"+ k2 ()X
y

” ' ! K
(86) Y +%Y +k2(s)Y - Rp(X2,22,Y2)-

2"+ 27"+ k2 (s)Z -
y

K 2y2 w2y &L

——XRp(Z5,Y, X )——2-=0,
> b ) 3
2

g_yzo

ys:

K &2 "
yz?z RD(XZ,YZ,ZZ)—Z—gz_\/gL'z,
¥

where we have used relation (75) to eliminate the fractional arguments in the elliptical integrals. When
doing numerical computation, however, using the rational arguments for the elliptical integrals is probably

more stable. For example, from Eq. (75) it is probably best to compute Rp(X? Y2,Z?) as

(87) RD(xz,Yz,zz)z%

X2 y?
RD|:?’?'1:|'
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6.4. Approximate Form of the Envelope Equations

In the literature, the bunched beam envelope equations are sometimes expressed without explicit
reference to elliptic integrals, typically by introduction of a “form factor” and/or approximations in lieu of
the integrals [11]. There, we see algebraic expressions or expressions involving elementary functions
instead of the special functions. One way to achieve this form is with the procedure given below. The
approximation presented here is accurate when the transverse plane envelopes X and Y are approximately
equal.

To simplify the discussion below, we begin by

immediately introducing the form factor & It is X 1 Rl
defined by i

S @ dt

SO = | ——F——w

2‘[0 (t+1)(t+sz)3/2

(88) 1- costs for s<1
_ 1 1-s?
1-8 |1 S coshls for s>1
s? -1 s
1 2 3 4 5

A plot of this function is shown in Figure 4. From Figure 4: form factor &s)

the figure we see that £ has a value of 1 at s=0, 1/3

at s=1, then asymptotes toward zero as s approaches

infinity. Note that & has the definition given by the integral expression, however, this integral may be
expressed analytically in terms of elementary functions according to the above.

Using the form factor we can approximate the elliptic integrals by the following:

Ro (27, Y% X%)~ st x]J-rY {1_9{\/%]}’

(89)  Ry(Z%,X2,Y?) z%x iY {1-5&%)},

3 z
Rp(X?Y%2%)r ——¢& — |,
o ) X7 ¢ 3
where the approximations are most accurate when X=Y, that is, the axisymmetric case. Substituting the

approximations for the elliptic integral into the envelope equations for the equivalent uniform ellipsoid (86)
yields the approximate envelope equations for the equivalent beam. They appear as follows:

’ 2
X7+ L xr s k2()x —SKRIZe@IVXY) ey
¥

3K 1-£(Z/VXY)

2 Z(X+Y) ¥

2 3K EZIVNXY) &2
2 XY z3_\/g

(90) YLy k2 (s)y -
Ve

72"+ 724K (s)Z -y Ly,
y y

where we note the rational argument of the form factor &

For the reminder of this subsection we confirm the approximations of Eqgs. (89). We begin by
performing an expansion of the x and y envelopes X, Y about their axisymmetric value R. Employing a
small perturbation parameter £ <<1 (not to be confused with beam emittance) we have
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X =R+eX;+&%X, +...,

(91)
Y =R+sY, +5%Y, +

With this expansion, note that

X+Y +0(¢) and lim XY

&—0 &

92) R=

= Xl_Yl'

That is, R can be interpreted as the average value of X and Y to first order. The perturbation parameter
allows us to keep track of the order of accuracy in our approximations. As & increases the beam may
become increasingly more eccentric in the transverse plane. In fact, our final results for this section are
exact for axisymmetric beams.

Consider the envelope equation for the z plane. Writing out the elliptic integral explicitly in this case
gives the following expression:

3 1 0 dt
(93)  Rp(X%Y2z%)=> [ ,

2(XY P20 Je XY IX) [+ 227 xy 2
where we have pulled a factor XY from each product in the denominator, then applied a change of
variables. The expression under the radical can be written t2 +(X /Y +Y /X)t+1 with the term in
parenthesis expanded as

2
(94) (é+%} = 2+(X1R;Y1)52 +0(c).

2

Thus,

95) 2+ (X/Y +Y /X )t+1=(t+1)+O0(c?)

and we can approximate the eIIiptic integral as

Rp(X2,Y2,22) ~ ,
) ZXYZ VXYI (t+1)(t+ 22 /XY)SIZ

et

where we have identified the form factor &-).

Now consider the transverse plane, in particular, the x plane. Results for the y plane follow in an
analogous manner. The elliptic integral can be written

3 1 = dt
97 Rp(Z2Y? X% =2 ,
) o ) 2 (xy 2 I0 (t+Z /XY M2 (e +Y 1 X2 (t+ X 1Y )2

where, again, we have pulled a factor XY from each product in the denominator, then applied a change of
variables. Now we expand the last two terms in the denominator as

(E+Y IX) 2+ XY 2 (t+ X 1Y) = (t+1)t+ X /Y )+0(£?),
= (t+2)Q/Y Yty + X)+0(s?),

(98) :YB(’[ +17 +0(e)

:%(x +Y Nt+1) +0(s).
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Thus, we can approximate the elliptic integral as

3 1 dt

Z 00
Rp(Z2 Y23, X)) ~— ,
° XZ (X +Y)J/xy L t+22/xv 2t 410

(99)

"% (X iv)’{&—vj

where the auxiliary function #(-) is defined

ne=[
(100) 0 ft+52 2t 41
=1-4(s).

The equality on the second line is found through integration by parts. From this second relation we can
express the elliptic integral for the transverse plane in terms of the original form factor

(101) Ry(z2Y2Xx%)~— 1 {1_5( Z H

XZ X +Y v XY

Likewise, for the y plane we have

(102) RD(ZZ,XZ,YZ)ngZ xiv[l_g{\/i_ﬂ'

Notice that our approximations for the transverse plane elliptic integrals are only accurate to order &
whereas the longitudinal plane approximation is accurate to order 2. This condition makes sense in that
the transverse plane approximations are more sensitive to the eccentricity in X and Y than the longitudinal
approximation.

7. TRANSFER MATRIX APPROACH

Here we assume that, to first order, the dynamics of each beamline element n can be represented by a
matrix ®,, known as the transfer matrix for the element. Thus, the action of the element on a particle with
phase space coordinates z would be given by the matrix-vector product ®,z. In many situations it is
possible to explicitly calculate the transfer matrix for a particular beamline element a priori, either
analytically or numerically using the principles of linear systems. Moreover, it is found that, with a
conjugation operation, the rms moments of the beam can be propagated using the same transfer matrix ®@,,.

For practical numerical simulation we usually separate the action of the external elements and the
space charge effects. That is, the beam is propagated through the element according to its external forces,
and corrections are applied to account for the space charge along the way. We find that it is possible to
represent the action of the linearized space charge forces as a transfer matrix. Consequently, simulating the
evolution of the moments up to second order requires determination of the transfer matrices for each
beamline element and the transfer matrix that accounts for space charge.

7.1. Transfer Matrices and External Elements

Ignore space charge for the moment. Referring to Egs. (16), the equations of motion for the x plane
can then be put into the matrix-vector form

(103)  x'(s) = A(s)x(s) ,

where
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X(s) 0 1,
(104) X(S)z[' j and  A(s)=| _ 2 _7'(s) |.
x(s) ® 6

In principle, if we know kZ(s) and (s) there always exists a solution to Eq. (103) of the form [8]
(105)  x(s) = @(s)x(0),

where x(0) is the initial value of x(s), and ®(s) is the fundamental matrix of the system; it is a matrix
function of the independent variable s having the following properties:

@'(s) = A(s)®(9),

108) 01

where 1 is the identity matrix. We use this fact to develop a numerical algorithm for simulation. If we
determine the matrix @ for each beamline element (say by explicit calculation or by numerical integration
of the above equation for @), then the particle coordinates can be propagated by simple matrix

> - > O L

Xo X1 X, X3 XN-1 XN

Figure 5: transfer matrix representation of the beamline

multiplication. (This fact comes from the semi-group property of the fundamental matrix.)

We can discretize the continuous matrix-vector system (105) by considering only points at the entrance
and exit locations of each beamline element. Let @, denote the fundamental matrix solution for beamline
element n having length I, evaluated at the final location, that is

(107) o@,=0(,)

The constant matrix @, is known as the transfer matrix for the element n. Now let x, denote the state of
the particle at the entrance of the "™ beamline element

(108) x, =x(s,),

where s, is the location of the n' element's entrance. This situation is shown in Figure 5. Propagation of
the particle state from one element to the next is given by the set of discrete equations

(109) x,4=P,x, n=01,...

Thus, instead of a set of continuous ordinary differential equations we now have a set of discrete transfer
equations to describe the particle motion. By the linearity of electromagnet forces we can describe the
action of each element by its transfer matrix @, then use a separate process to determine the space-charge
effects down the beamline.

Many times we can compute the transfer matrix for a beamline element analytically. For example, in
the case of an ideal quadrupole lens where the forces are linear throughout and the fringe fields are
negligible, then the transfer matrix is found to be
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coskl %sinkl 0 0 00
—ksinkl  coskl 0 0 00
(110) D g = 0 0 coshkl %sinhkl 0 0|
0 0 ksinhkl coshkl 0 0
0 0 0 0 11
0 0 0 0 01

where k is the quadrupole focusing strength, I is the length of the quadrupole, and where the quadrupole is
focusing in x and defocusing in y. Note that in this ideal case there is no coupling between phase planes. A
description including misalignments would contain nonzero values in the off-diagonal blocks.

7.2. Space Charge Impulses

In the previous subsection we saw that, barring space charge, the transfer matrix for each element can
be used to propagate a particle's state through the element. In the following subsections we find that the
same transfer matrix can also be used to propagate the moments of the beam distribution through the
element. Consequently, we would like to formulate a transfer matrix representation for space charge
effects. Here we develop such a matrix.

A straightforward approximation that simulates the action of space charge is to "kick™" the beam at
regular intervals. Specifically, we apply the space charge effect through a section of length As all at once,
as a momentum impulse. This technique is equivalent to modeling space charge as a defocusing thin lens.
Of course to maintain accuracy is it necessary that As be sufficiently small. The magnitude of the impulse
is determined by returning to the Newton's inertia equation

(111) dg’f -F ae{x,y,2},

—Usa

where p,, is the momentum component in the « direction and F, is the self force in the « direction. To
illustrate the computation we consider specifically the x phase plane. We start with the expression for the
force on a beam particle given by Egs. (12), considering only the term specific to the self force.
Approximating the derivative dp/dt by finite the differences Ap/At and using the linearized electric field of
Eg. (59) transforms the above equation into the following approximation:

(112) ApxzizExAtziz<XEx>
7

Recognizing that At=As/v and converting to our normalized momentum x'=p,/p we have

' 1 q <XEX>
AX' =
X )/2/)72 ymcz <X2>

At X.

AsX,
(113)

SC,X

where we have defined the thin lens focal length due to space charge as fix. Thus, the action of space
charge in the x plane can be written in transfer matrix form as

1 0
X X
Xnt1 f Xn

SC,X

where As is the length over which the space charge effects are being applied.

28



LA-UR-02-4979

In the z phase plane the calculations are somewhat different although the result is the same. There the
self-force on a particle is Fs,=qE,, however Az'=(1//)A(Ap/p) so we end up with the same factor of yin the
force terms in all planes. Using the value of A for the equivalent uniform beam and the beam perveance K
defined by Eq. (15), we compute the thin lens focal lengths as

1 K[1 1 3/2R <y’> <22>1
2_5<X2> ' =+ |y

D
<x?> <x®>

5<y®> <y’> <y?>

1 1 3/2R <x?> <y2>1
_5<22> D l =+ |

1 k1 1 % [<z?s <x?s
2
K
2

2 2
fsc,z <Z™> <71">

The full transfer matrix @ that applies the space charge kick over a distance As is then

1 0 0 0 0 0
Asifg, 10 0 0 0O
o 0o 1 0 0 0

(118 @ =l o Aslfg, L0 O
o 0o 0 o0 1 0
0 0 0 0 As/fg, 1

Since fgx depends upon (x%) and (xE,), it must be recalculated whenever the dimensions of the beam bunch
change appreciably. Likewise for the other defocusing strengths f,., and fs,. Specifically we are saying
that the space charge transfer matrix is a function of the covariance matrix, that is

117y o, =, (o).

7.3. Equations for Centroid Motion

We find the equations that propagate the mean value vector simply by taking the moment of Eq. (109)
for the full phase coordinate vector z,. Since the transfer matrix ®, does not depend upon the phase space
coordinates, we get

(118)  (z,,4)=@,(z,),
or

(119) z,,,=9,z,,
where

(120) z,=7z(s,),

the value s, being the location of the entrance to the n™ beamline element. Recall that there are no space
charge effects for centroid motion. Therefore, we do not apply any space charge kicks when propagating
these moments. We simply multiply z,, by the transfer matrix @, for each element n in the beam line.

7.4. Equations for the Second-Order Moments

For simplicity, once again consider only the x phase plane. The continuous evolution equation for o
can be found by direct differentiation of o, with respect to s, then applying Liouville's theorem and Eqg.
(103). From the definition of o, we find

29



LA-UR-02-4979

6y = <x'xT>+ <xx’T>
(121) = A<xxT>+<xxT>AT
=Ao,, + cxxAT
The solution to this matrix differential equation is given (formally) by
(122)  6,,(5) = D(5)0,, ()@ (5),

where ®(s) is the fundamental matrix solution of Eq. (106), and o4(0) is the initial covariance matrix for
the x plane. (This fact may be checked by direct differentiation.) The above equation also holds for the
entire set of second moment o when using the fully augmented fundamental matrix ®(s). Recalling that the
transfer matrix for an element is found by evaluating the fundamental matrix at the end of the element (i.e.,
®,=®(1,), where I, is the length of the n'" element) leads to the following transfer equation for the second-
order moments:

(123) 6n+l = q)ncn(I)I 1
where
(124) o,=0(s,).

We see that advancing the state of the second-order moments through the n™ beamline element is
accomplished by transpose conjugation of o with the transfer matrix ®,. However, we must still include
the effects of space charge.

Space charge effects are imposed using a transfer equation analogous to (123). However, here we
conjugate o with the space charge transfer matrix ®,.. Recall that the space charge transfer matrix @y is a
function of the covariance matrix o. Therefore, for accurate simulation of long beamline elements it may be
necessary to split the beamline element into several subsections, applying the space charge kick after each
subsection. Specifically, we advance o by the transfer matrix for a subsection, conjugate by ®,., and repeat
until we are through the element.

7.5. Extensions to the Inhomogeneous Case

In some particle beam situations the modeling equations are inhomogeneous, that is, they contain a
forcing term. For beamline elements, this is the case for dipole magnets, for example when used as beam
steering magnets (for example, see Appendix A.3). Many control systems also have modeling equations of
this type. Let the transfer equations for an inhomogeneous element be given as

(125) Zy1 =(I)nzn +Fnun

where z, is the 6x1 column vector of phase space coordinates, @, is the 6x6 transfer matrix, I',, is a 6xM
matrix, and w, is a column vector of length M. Note that this is still a linear system (in z, and u,) only now
we have a forcing term driven by u,. The vector u, represents some external parameters for the element,
perhaps a control parameter or perhaps an unknown noise source (in this case u, would be a random
variable).

We can compute the propagation equations for o, simply by unwinding the definition and using the
above transfer equation. We get

.
6n+1 = <Zn+1Zn+1 >’
(126) :<((I)nzn +l"“un)((I)nz,1 +Fnun)T>,
=®,6,®, +o X, I+ X, ® +r,YTI,",

where
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Xll

<ZnUnT > )

(127)
Y, = <u“unT > .

The 6xM matrix X, is the cross-correlation matrix between the phase-space coordinates and the input

vector. The MxM symmetric matrix Y, is the covariance matrix of the drive vector. Note that if u, is a

scalar value, say up, then X,=u,z and Y,=u,z

The matrix I, is given by the structure of the system, representing coupling between the particle state
and the external drive source u,. Thus, to use the above transfer equations for o, it is necessary to
determine X, and Y,. Typically X, is zero, it represents the correlation between the drive vector u, and the
coordinates in phase space z. Most systems are designed to avoid any such correlations. When u, is a
random variable (representing noise or other unknown), the matrix Y, is the autocorrelation. For most
systems it can be determined, at least approximately, through measurement. When u, is deterministic, Y,
is essentially just u, squared, which is easily determined.

7.6. Homogeneous Coordinates
Here we again consider inhomogeneous systems, however, now we assume the special form

(128) Zy =Pz, +u,,

where u,eR® is the external drive vector. That is, the external driving forces can be described as a vector
in phase space. This situation occurs when the effects of an inhomogeneous element behave as translations
in phase space, such as those produced by an ideal dipole magnet. In this situation we can form a
convenient augmented state variable system that has the same form as the homogeneous transfer equations.

Mathematicians typically use homogeneous coordinates to parameterize the projective spaces P". They
are also widely used in computer graphics for three-dimensional rendering, since translation, rotation, and
scaling can all be performed by matrix multiplication [18]. The n-dimensional real projective space RP"
can be described as a set equivalence relations [Xo, ..., X,] on R™* where [Xo, ..., X,]~[WXo, ..., wx,] for all
real w0, and such that not all the x; are zero. Thus, the points of the project space RP" are seen to be the
lines in ™! that pass through the origin. These equivalence classes are known as the homogeneous
coordinates of the projective spaces. (Another equivalent description of the projective space RP" is found
by identifying all the antipodal points of the sphere S".) The projective space RP" can be considered a
differentiable manifold with the atlas consisting of n+1 charts {U;,4}i=" where U; is the set of equivalence
relations [Xq, ..., X,] such that x;=0, and ¢:U; — R" is the bijective coordinate map

(129) i i[Xgre- s Xjree Xy 1 (Xo / X yee ey Xy e Xy 1%5)

The caret indicates omission of the coordinate. Note that the union Ui,"U; covers all of RP". More aptly,
note that the coordinates of the n+1 chart consist of the following equivalence relations:

(130) ¢ (Xgreo X ) = [Xgreo - Xy 1Al V(Xg,.. X, 1) €R".

Thus, U; is seen to be the set of all lines in R™? passing through the plane {(Xo,...X,)eR™™ | X=1}. We
shall use the homogeneous coordinates of this chart.

Let the augmented phase space coordinate £ be
(131) ¢= [ﬂ =x x y y z z 1.

Then system (128) can be written in the form
(132) €n+l = ®n€n 1

where the 7x7 matrix 0, is defined as the augmented square matrix
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q)l’l ull
w0 [% ]

This is exactly the form of the homogeneous transfer equations. Therefore, if we only encounter
inhomogeneous transfer systems of the special form given above, by employing homogeneous coordinates
we can convert back to homogeneous transfer equations.

For envelope calculations consider the modified covariance matrix © formed from the phase space
vector ¢ according to

(134) 1= <g§T > .

To simplify the discussion, consider only the x-plane phase space. In the homogeneous coordinates the x-
plane phase coordinates are given by

(135) gzmz(x x' 1)

Thus, the modified x-plane correlation matrix t,, is formed by

-l (e ol o
(136) T, =(&")=| (xx) (x?) (x)|= ;"T" .
K ()1 '

We see that in the homogeneous phase space coordinates the covariance matrix ¢ contains the original
covariance matrix o plus the mean value vector z. Moreover, transpose conjugation of the covariance
matrix T, by the transfer matrix ®, yields the following augmented system:

®.06,® +®7u +uz' @ +ud’ @7, +u,
T

T T
z, ®, +u, 1

(137) Th1 = (')n‘tn@)n-r :|:

The upper left block is exactly the covariance transfer equation for the inhomogeneous system (128). The
diagonal blocks are the transfer equation, and its transpose, for the mean value vector. Consequently, both
the transfer equation for the mean value evolution and the covariance evolution are included in the
modified transfer system.

To make the use of homogeneous coordinates more explicit, consider the case of an ideal dipole-
correcting magnet in the x phase plane. The effect of such a device is to add an impulsive kick in the
particle momentum of intensity Ax'. Thus, the modified transfer matrix for the x phase plane would appear
as

10 0
(138)  Ogpoe =|0 1 AX'|.
00 1

The effects of the ideal dipole are found by transpose conjugation of the modified covariance matrix t,, by
the above transfer matrix; we have
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X1 0 0
O ipoe Txx@aipore’ =|0 1 AX' | (xx') <x’2> xX[0 1 0},
1 X X' 10 Ax' 1
(139)
<x2> (XX} + XAX' X
= | (XX} + XAX' <x'2>+2Y'Ax’+Ax’2 X +AX'|.
X X+ AX' 1

We can clearly see the effects of an impulsive kick on the entire beam, both in the centroid behavior and
the rms envelope behavior.

8. SUMMARY AND CONCLUSION

Beam envelope simulation as described here is a computationally inexpensive way to obtain particle
beam behavior to first order. Rather than propagating an ensemble of particles then computing the statistics
to determine the rms beam properties, we propagate the rms beam properties directly. We have seen that
theoretically that this is a valid approach. However, there are clearly limitations to simulation results
generated in such a manner. The techniques described here are intended to give a quick insight into general
beam behavior and not to be used as a tool for detailed dynamics analysis. Consequently the simulation
methods here are appropriate for initial off-line design studies and for on-line model reference control
applications, where fast real-time response is essential.

The validity off our analysis typically comes into concern because, by practical considerations, we are
forced to make some simplifying assumptions to implement the simulation procedures. The first
assumption we make is the applicability of Liouville's theorem to form the evolution equations for the
distribution's moments. Technically, Liouville's theorem is valid only in 6N dimensional phase space for
collisionless system, where N is the number of beam particles. However, it is approximately true whenever
the collective fields of the beam can be accurately described by smooth functions. Thus, we have assumed
that our beam is populous enough, and compact enough for this condition to be true. Another circumstance
where this assumption holds is for relatively cold beams. Both situations assume that the Debye length of
the beam is small enough so that any particle see mostly collective fields and there are few collision-like
encounters. The next critical assumption comes in the form of ellipsoidal symmetry. That is, we assume
that the beam exhibits ellipsoidal symmetry in configuration space. Under this assumption we are able to
analytically compute the effects of space charge on the moment dynamics. Unfortunately it is known that
ellipsoidally symmetric beams are not, in general, stationary beams [21], the only one of this type is the
KV, or micro-canonical distribution. Thus, we must assume that our true beam is very close to an
ellipsoidal one. Fortunately ellipsoidal beams can accurately represent many laboratory beams.

The last major assumption is that of linearity. Specifically, we assume not only that all external forces
are linear, but also that internal forces (i.e., self forces) are linear. Consequently any nonlinear effects from
a beamline element cannot be modeled, for example, fringe fields, higher order field components, etc. Our
linear model for the internal fields essentially constitutes the assumption of constant rms emittances. This
is true for both the rms envelope equations and the transfer matrix method. There is no known practical
method for simulating emittance growth using only beam statistics. Currently, only full multiple particle
simulations have this capability. However, it is possible to assign emittance growths based on analytic
approximations or a priori knowledge of emittance values. In the envelope equations we just assign the
emittance values directly, for the transfer matrix approach we multiply the second-order covariant by the
growth factor.
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APPENDIX A: TRANSFER MATRICES FOR COMMON BEAMLINE ELEMENTS

We describe here the transfer matrices for some beamline elements in common use. As was done with
the o matrix, we decompose a general transfer matrix @ into 2x2 composite matrices according to the
following:

(Dxx (ny (I)xz
Al o=lo, 0, o,
(I)zx (I)zy (I)zz

In most cases only the block diagonal sub-matrices @, ®yy, and ®,, are nonzero. Nonzero values of the
off-diagonal sub-matrices indicate coupling between phase planes.

Many transfer matrices exhibit a semi-group property. Specifically, if we denote the transfer matrix of
an element of length As as ®(As), then the transfer matrix for two such elements is ®(As)®(As). In general,
for arbitrary lengths As; and As, we have

(A2)  D(As; +As,y) = D(As;)D(AS,) .

A.1 Drift Space
The transfer matrix @ for a drift space of length As is given in terms of its nonzero diagonal blocks

(A3)c1>—1AS (D_lAs (D_lAs
' “ o 1) wolo 1) o 1)

where the sub-matrix for the z plane assumes that the coordinates are (z,z"). If the coordinates are (z,Ap/p)
then the sub-matrix is

1 AS/;/ZJ

(A.4) Qn:{o 1

This transfer matrix has the semi-group property.

A.2 Quadrupole

In the case of an ideal quadrupole lens where the forces are linear throughout and the fringe fields are
negligible, the transfer matrix block diagonals are

1. 1.
= = 11
(A5) @, - coskl ksmkl , @, - coshkl ksmhkl , ‘DZZZ(O J,
—ksinkl  coskl ksinhkl  coshkl

where @, represents the block diagonal of the focusing plane and @, represents the block diagonal of the
defocusing plane of the quadrupole. The quantity I is the length of the quadrupole and k is the quadrupole
focusing strength, it has the values

Ko =[5
mag ﬂ]/mC
_ 1 |av
esq ﬁa }/ITICZ
where Knqg is the value for a magnetic quadrupole and ke, is the value for an electrostatic quadrupole. Here

G is the magnetic field gradient at the beam axis, V, is the electrostatic electrode potential and a is the
aperture of the quadrupole.

(A.6)

k
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A.3 Dipole Steering Magnet (As a Thin Lens)

We may treat a dipole magnet as a thin lens by again approximating the time derivative of momentum
as a finite difference in the equations of motion. The equation of motion for a particle in a dipole field of
strength B is

d_p =QvxB,
(A7) dt

=qpe(x,y'1+2") x(By,By,0),

where we have assumed the magnetic field is constant throughout the magnet. Approximating the
derivative by a finite difference gives us the equations

Apy =—q(1+2")B,As,
(A.8)  Ap, =q(l+2')ByAs,
Ap, = q(X’By —YBy)As,

Using the relations AX'=Ap,/p, Ay'=Ap,/p, Az'=(1/#)Ap/p, we can form the transfer system

Xns1 1 0 0 0 0 0 Yx, 0
Xh1 0 1 0 0 0 w,As| X, oy AS
0 0 1 0 0 0 0
CORNMAIE s ,
Vi 0 0 0 1 0 wyAs|yy, oy As
Zoa 0 0 0 0 1 0 |z, 0
Zha 0 wAsly® 0 a)yAS/y2 0 z, 0
where
B
(A10) o, =- =y and wy E&
fyme fyme

are the cyclotron phase advances in the x and y directions respectively.

Since the contributions from the phase space coordinates are usually small we can often approximate the

dipole effect using only the additive term in the above. Referring to Section 7.5, in this case we have I'=1
and

0 Xo, 0 Xw, 0 O 0 0 O 0 o000
0 Xo, 0 Xw, 0 0 0 w2 0 oo, 0 0
(All) X- 0 Za)x 0 Za)y 00 oy 0o 0 O 02 00
0 Yo, 0 Yo, 0 0 0 w0, 0 @y 00
0 Zwy, 0 Zw, 0 O 0 0 O 0 00O
0 Zoy, 0 Zw, 0 O 0 0 o0 0 o00O0

A4 Dipole Steering Magnet (As a Thick Lens)

We present the full solutions for particle trajectories through constant magnetic fields in the transverse
directions. These solutions can be computed analytically and put into transfer matrix form. From the full
solutions one can derive transfer matrices for dipole magnets having fields directed in only one plane.
Starting from the Lorentz forces the differential equations describing the motion are
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(A12) y'=-w,l1+2)
"= X' +wyy
where
B
(A13) o =——r  ad =22
pyme Byme
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are the cyclotron frequencies in the x and y directions. The above equations can be solved to give us the

transfer matrix

2 w2
1 w—’;sina}CAs+—;As 0
a)C a)C
2 w?
0 | —%coswAs+—-| 0
a)c a)C
,
0 - (Sinw As - w As) 1
(Ald) @-= 2%
w,
0 Y (cosweAs-1) 0
wC
0 a)_; (coswAs—1) 0
a)C
0 ﬂsina)CAs 0
a)c

and drive vector

2]
—%(coswAs - 1)

c

W, .
“Xsinw,As
@

(A.15)

(0]
y

—(coswoAs - 1)
c
a)y )
—sinw.As
a)C
Sinw,As
7C,As
@

cosw As -1

where

(A16) @ =+ w? +w§ .

Oy (sinw,As - w,As) 0

a)C
Cl)
L (cosmAs-1) 0
a)C
2 2
@ Dy
—s |na)cAs+—As 0
a)C C
2 2
(4]
—’2' CosmwAs+—5| 0
wC C
CU
cosa)CAs 1) 1
a)C
w, .
—Lsinw,As 0
a)C

a)—’z‘(cos w,As —1)

—(cosw,As 1)

a)C
@y .
—Xsinw,As
a)C

w

(O ,

a)y .
—=SINw AS
wc
Sinw,AS
a)c

COSw AS

Note that again I'=I. Note also that in the limit as As—0 the transfer matrix and drive vector approach the
thin lens approximation but with the drift component.
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1 A 0 0O 0 O 0
0 1 0 0 0 wAs @, AS
ALY lim @ 0 0 1 As O O i 0
: im ®= , im u= .
( ) AS— 0 0 0 1 0 a)yAS AS—)mu a)yAs
0O 0 O 1 As 0
0 w8 0 wAs O 1 0
A.5 Bending Magnet
In a bending magnet the
design trajectory is where the
force from centripetal
acceleration exactly balances
the magnetic force, it is an arc B,

with radius Ry. To analyze a
bending magnet we usually
employ a perturbational
analysis around the design
trajectory in cylindrical
coordinates (r,6z). Figure 6
demonstrates how we construct
the beam coordinates (x,y,z) as
perturbations  around  the
synchronous trajectory of r=Rq.

Clearly the bend angle « is
a parameter of the bending
magnet. The radius of
curvature Ry is also a parameter
of the bend; along with the
design energy it determines the
strength of the magnetic field By=B,(Ry) on the design trajectory. However, we also require a third
parameter, the field index n. The field index is defined

Figure 6: sector bending magnet

(A18) n=_"0%B: |
By or =R,

The field index is simply the normalized derivative of the bending field evaluated at the design radius. In
order to provide focusing in both transverse planes it is necessary that the bending field decrease in the
radial direction. Kerst and Serber first studied these effects for the betatron [14], they found for focusing in
both transverse planes it is necessary that O<n<1.

To find the transfer matrix for a bending magnet we start with the equations of motion in cylindrical
coordinates. Since magnetic fields cannot accelerate, y is constant. We also assume that there is no
magnetic field in the @direction. With these considerations the equations of motion are

ymt —ymro? = qré., ,
(A.19) ymréd+2ymrd =qiB, —qrB,,
ymz =—qré, .

The first-order variation in both magnetic field components B, and B, can be written in terms of the field
index n using the fact that VxB=0. We have
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BZ = BO - nBO f
I:20
(A.20)
z
B, =-nBy—,
r 0 RO

where we have assumed that B,(z=0)=0 by design. Now we assume a perturbation around the design
trajectory according to

r=Ry+ex+0(g?),
(A21) 0=+ gRiO+0(gz),
Zey = &y +0(s%),
where g<<1 is a dimensionless parameter used to keep track of the order of approximation. Note that we

have identified the cylindrical coordinate z with subscript cyl whereas the beam coordinate z is unadorned.

Note also that the path length parameter s is related to 6by
(A22) s=Ry(a—at) = i——a)R g
: — 0 c dt - c'0 ds .

Also we have the convenient physical relations

_ 9By
©om
(A.23) v=$=m0=cho,
g _Jmv _ pymc
0 — - [l
aRy,  dRy

where a, is the cyclotron frequency.

The transfer matrix solution to the above linear perturbation is given as follows:

o - cosk,As %Si“kxAS o, - cosk,As %sinkyAs
—k,sink,As  cosk,As —kysinkyAs  cosk,As
(A.24) , _
1 kB As—skaAs+ 1- 1 As
@ = R; R;
0 1

In addition, we also have the off-diagonal blocks

R, (1 cosk,As)

0 _ Rysink,As  Ry(L-cosk,As)

_ ks _ 2
(A25) @y, = Ry sink,As Pox = Ky K
—_— 0 0
Ky
where
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K, = 1-n 7
I:\)0
(A.26) K, :ﬁ,
RO

The above description is for a bend in the horizontal plane to the right (positive x direction). For a bend to
the left replace ®,, and @, by -®,, and -®,,, respectively.

A.6 RF Gap (As a Thin Lens)

Here we treat the effects of a general RF gap as a thin lens. The energy gain in the gap AW is given in
terms of the Panofsky equation [22]

(A.27) AW =0qE,TLcosg,

where q is the unit charge, Ey is the longitudinal electric field in the gap, T is the transit time factor (the
ratio of the energy gained in the RF gap to that of a DC gap of the same field amplitude), and ¢ is the RF
phase of the synchronous particle at the center of the gap. Along with h, the (integer) number of the field
harmonic, we assume that these are the parameters of the RF gap.

The electric fields in the gap cause longitudinal focusing and radial defocusing, as well as the change
in energy. Here we present the thin lens focusing constants to account for these effects. The values of X', y'
and z' tend to decrease with increasing longitudinal momentum simply because they are normalized by this
quantity. However, the unnormalized values p,, p,, and Ap are constant with an increase in longitudinal
momentum. Thus, the action of the RF gap is produced by first unnormalizing the momentum components,
transforming by a thin lens, then normalizing the momentum components with respect to the new, larger
longitudinal momentum. For example, for the x phase plane we have

Pyn = pixr; =(ﬂ7)imcx;, )
(A-28) Pxn+r = Pxn + kxxn )

’ :px,n+l: px,n+l
" py (By)emc’

where the subscript i refers to quantities with initial energy and the subscript f refers to quantities with the
final energy. The following transfer matrix captures this sequence of operations:

! 0 1 01 0
D, =o ;( J( ]
(Br);mc J\kx  LAO (By)ime

1 0
= 1 kx (ﬂy)i
(Br)e mc (Br)s

Likewise, for the other phase planes we have

(A.29)

1 0
o,=| 1 kK (B
(Br)e mc (Br)s
(A.30) . .
D, = 7’ k7B ,
yE(Br)e me o yi(By)s
Note that
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(Br); :W’iz -1,
(Br)s =47i -1,

A3l
if ER '

where Eg is the rest energy of the beam particle (mc?). The values of the focusing coefficients are found by
integrating the electromagnetic fields in the gap. We have (approximately, for example see [22])

k
(A.32) k_X:L _V:L, k_Z:_2}72L,
mc mc mc mc mc mc
where
(A33) K=h_ 7

—————qE,Lsin(-¢),
me ﬁzyzmczﬁq 0 ( ¢)

/3,7 are the relativistic parameters evaluated at the average energy
(A34) W =W, +AW /2,
and h is the field harmonic at which the gap is operating.
If the longitudinal coordinates are given as (z,Ap/p) the corresponding transfer block is then

1 0
(A35) @,=|_ 1 kK (B
(Br)e mc (Br)s

This value may be used to approximate the previous matrix since 72/ is typically close to unity.
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APPENDIX B: SELF-FIELD MOMENT CALCULATION
We shall calculate the moment (zE,). The other field moments follow a similar procedure.

(B.1) zE .[” { 8¢(X Y, Z)}F(a—z Z—z ]dxdydz

Substituting the value for potential ¢ from Eq. (71) we have

X2 y2 Z2
+ +
©2) (iE,) - 1 qach‘ 'rwj _[ [Ha2 t+b? t+cZJ c x? .\ y? +22 dtcclydz
250 (t+a )l/2(t+b )l/2(t+c )3/2 a2 b2 C2 '

Since the integrations are independent we may switch the order so the integration with respect to t is last.
Now employ the change of coordinates

X = rvt+a? sindcosg
(B3) y=ryt+b?sindsing dxdydz = vt + %Vt + b2 vt +c2r2sing

z=ryt+c? cosd

along with the appropriate limits of integration to yield

(B4) (zE,)= il quch IZﬂJ.O”IOwrzcoszeF(rz)F[rz+tr2u(0,¢)]r2 sinedrdadgdt ,

where the function u(é,¢) is defined

(B5)  u(@,¢)=sin? g[cos ¢ Sln2¢j+cosz¢9'

a b2 c?

We now switch the order of integration again and apply the substitution
dr

_ 2 2 _
(B.6) z=r"+trudg) dt —rzu(0,¢)

to produce

(B.7) (zE,)=

1 gabc J-ZHJ-” cos? dsin@

N 2¢, u(d,9) d9d¢_[o Irzr F(r*)F(z)d«r.

Using the definitions
(B.8) G(r)zij(s)ds and F(F)erz(rz)dr,
r 0
and the fact that
P 22 2 1
(B.9) j r2F(r2)G(r2)dr = = I(F),
0 4
the original integration is reduced to

(B.10) (zE,)=

F(F) gabc J-ZﬂJ-” cos? Gsin 04 g

u(@.¢)

where we have integrated out the distribution dependence.

8¢
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Note that the function u(é,¢) can be written

2 n2 2 .2
(B.11) u(d,¢) = {m in? 6’+i2cos2 0}+{bTasin2 6’}c052¢.
2a?h?

si
2a’b? c

Using this decomposition and the fact that

2z d¢ 2
(B.12) = ,

J.o A+ Bcos2¢ /AZ—BZ
further reduces Eqg. (B.10) to

T 2 i
(zEZ>— I'(F) qn abcj _ cos“ gsing _ 40
N 4gp 0 [gin4yg (1 1jsin29c0529+cos49
a’b? \a? b? c2 ct
(B.13) - ,
- 1ﬂf\lF) l?: abcjo 2 2 COS”ZHSI-nf 2 5 \V/? a0
0 sin 6'+cos o sin 6+cos 0
a’ c? b2 c?
If we employ the substitution
(B.14) cosd = sing = singdg == C gt
. t+c? t+c’ 2(t+cz)3/2
we find that
I'(F) qra®b®c? , = dt
B.15 ZE,) = c dt.
( ) < Z> N 480 J; (t+a2)1/2(t+b2)1/2(t+c2)3/2
or
21,2.2

(B.16) (zEZ>=mMCZRD[aZ,bZ,CZ],

N 6eg

where Ry is the Carlson elliptic integral of the second kind.
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