UPGRADE PLAN OF THE COMPACT ELECTRON LINEAR ACCELERATOR LEENA FOR A TERAHERTZ RADIATION SOURCE

Satoshi Hashimoto^{#,A)}, Sayaka Chin^{A)}, Dazli Li^{B)}, Sho Amano^{A)}, Shuji Miyamoto^{A)}

^{A)} Laboratory of Advanced Science and technology for Industry, University of Hyogo

NewSUBARU, 1-1-2 Koto, Kamigoricyo, Akougun, Hyogo, 678-1205, Japan

^{B)} Institute for Laser Technology, 2-6 yamada-oka, suita, Osaka 565-0871, Japan

Abstract

We are planning to upgrade the 15MeV electron linear accelerator LEENA as a radiation source in terahertz regime. For the precise beam handling, an old-fashioned control system is now partially updated to the new one based on PC and Linux. Upgrade of other components such as beam monitors, RF low-level system, and terahertz radiation monitoring system are also being planed. Beam commissioning for the generation of terahertz light by Smith-Purcell radiation has started.

小型電子線形加速器 LEENA のアップグレード計画

1. はじめに

兵庫県立大学ニュースバル放射光施設内には ニュースバル 1.5GeV 電子蓄積リングとは別に 15MeV 小型電子線形加速器 LEENA (Laser Emitted ElectroN Accelerator) [1]があり、これまでに赤外線領 域の自由電子レーザーの研究[2]やレーザー照射ニー ドルカソードによる電子ビームの高輝度化に関する 研究[3,4]などが行われてきた。 しかし、加速器の設置から既に 15 年以上が経過 し、その間に特に大きな改修はなされなかったので 今となってはシステムの旧式化・老朽化は避けられ ず、本来の性能を十分に発揮できているとは言い難 かった。我々は LEENA 加速器をテラヘルツ放射光 源として再活用するため、システムの改修および アップグレードを 2011 年度から開始した。ニュー スバルで現在利用出来る軟 X 線領域のシンクロトロ ン放射光およびレーザーコンプトン散乱 y 線に加え

hashi@lasti.u-hyogo.ac.p

図1:小型電子線型加速器 LEENA

て、テラヘルツ波の産業利用に向けた光源の開発を 進めたいと考えている。テラヘルツ光源の候補とし ていくつか考えられるが、当面はスミスパーセル放 射による光源開発を進める。本報告では LEENA 加 速器の現状とアップグレード計画およびスミスパー セル放射によるテラヘルツ光源の開発について報告 する。

2. LEENA 加速器の概要

小型線形加速器 LEENA の現在の構成図を図1に 示す。LaB₆熱陰極カソードの付いた RF 電子銃から 発生した電子ビームはアルファ電磁石でバンチ長を 圧縮された後、加速管にて 6~15MeV まで加速され る。二台の偏向電磁石でビーム軌道を曲げた後、光 源用直線部を通過し、ビームダンプにて廃棄される。 表1に主要なパラメータを示す。

これまで、加速器機器は建設当時のままの PLC 制御が行われており、電磁石に通電する電流値や RF パラメータなどはポテンショメーターやタッチ パネルから手動で調整する必要があった。そのため 加速器調整時の安定性、再現性が困難という問題が あった。

表1: LEENA 加速器の主要なパラメーター

RF 周波数	2856 MHz
ビームエネルギー	6-15 MeV
エネルギー広がり	$\pm 0.5\%$ @ 15 MeV
マクロパルス	
ピーク電流	50 A
パルス幅	< 10 ps
ミクロパルス	
周波数	1-10 Hz
パルス幅	5 µs

3. システムのアップグレード

3.1 制御系

先に述べたように LEENA 加速器の最も大きな問題点はその旧式な制御系であった。機器インター ロックを含む既存の PLC システムはほぼそのままに して加速器の計算機制御を実現するために PLC と計 算機間の通信のために OPC サーバーを用いた(図 2)。ラックマウントサーバー(HP ProLiant DL)に Linux(CentOS 8.6)および仮想化ソフトウェア VMware server を動作させて、3台の仮想マシン (PC)を動作させている。LEENA 専用の Private LAN 上に運転制御に必要なすべての機器(Linux, PC, オ シロスコープ, GPIB 変換器, PLC, cRIO 等)を接続し、 クライアント端末からはリモートデスクトップおよ びX window により仮想マシンに接続して加速器運 転 GUI を表示・操作する(図3)。小型加速器シス テムの制御における仮想化技術の使用は、初期導入 時やメンテナンスにおける金銭的・人的コストの削 減を可能にし、性能的にも十分である(図4)。ま たシミュレーション計算時にはシミュレーション用 仮想マシンに、ビーム運転時にはビーム運転用仮想 マシンにと、CPU やメモリなどの計算機資源を優先 的に割り当てることが出来るなど、柔軟な運用が可 能である。

LabVIEW による運転プログラムの開発を行い、 CT 波形の取得、機器ステータス情報の取得、電磁 石電源等の計算機制御等は既に実現し、今後は LabVIEW および EPICS を用いたシステム全体を統 括するシステムの開発に取り組む予定である。

図 2: **OPC** サーバーを経由した **PLC** の計算機制御

図 3: LEENA 制御系ネットワーク

3.2 ビームモニター系その他の予定

テラヘルツ光源の開発に向けて、さらにビームモ ニター系、特に BPM の追加、GPT 等を用いたビー ムシミュレーションによるビーム輸送効率の改善、 冷却水等のユーティリティーの精密制御、RF low level 系の改善等を今後行う予定である。

4. スミスパーセル放射によるテラヘルツ 光源

電子ビームが周期的な構造(グレーティング)の 近傍を通る時にグレーティング表面に誘起される電 荷の振動により電磁波が発生する現象はスミスパー セル(SP)放射として知られている。短バンチ電子 ビームによるコヒーレント SP 放射や表面を走るエ バネッセント波と電子ビームとの相互作用で電子 ビームのエネルギーが電磁波に与えられる超放射 (Superradiant SP emission)は自発的な(Spontaneous) SP 放射に比べて強い電磁波を発生する[5-7](図5)。

ビームダンプ上流の偏向電磁石 BM3 直前の直線 部には現在、スミスパーセル放射のためのグレー ティングを内蔵したチェンバーが設置されている。 表2に本グレーティングの主なパラメーターを示す。 グレーティングはステッピングモーターで±5mmの 範囲で昇降が可能であり、また角度 θ 方向に回転制 御可能なミラーおよび数枚のミラーをチェンバー内 に設置してあり常にチェンバー横のビューポートか らテラヘルツ光が取り出せる仕様になっている。現 在、スミスパーセル放射によるテラヘルツ波の観測 に向けてビーム調整を開始したところである。

図 6 に Induce SUrafec Current Model[8]により計算 した放射パワーの角度依存性を示す。

(3) Superradiant Smith-Purcell emission

表 2 : LEENA Smith-Purcell グレーティング のパラメーター

周期	10 mm
溝長さ	3 mm
全長	480 mm
周期数	48
材質	無酸素銅

図 6: Induced Surface Current Model による 全放射パワーの角度分布

5. まとめ

ニュースバル放射光施設にある 15MeV 小型電子 線型加速器 LEENA をテラヘルツ放射光源として再 活用するため、アップグレードを計画し、一部はす でに進行中である。現在スミスパーセル放射に向け てビーム調整調整を行っている。

6. 謝辞

PLC による機器制御に関して多大なるご助力を頂 きました JASRI 制御情報部門の川田健二氏には大い に感謝いたします。また様々な作業にご協力頂きま した JASRI 加速器部門の皆川康之氏、竹村育浩氏に 感謝します。

参考文献

- [1] http://www.lasti.u-hyogo.ac.jp/NS/facility/leena/
- [2] T.Inoue, et al., "Enhanced Quantum Efficiency of Photocathode under High Electric Field", NIM A 528, pp. 402–407, 2004
- [3] T.Inoue, et al., "Enhanced Quantum Efficiency of Photocathode under High Electric Field", Jpn. J. Appl. Phys. Vol. 41, pp. 7402–7406, 2002
- [4] T.Inoue, et al., "Design of Laser-Excited Needle-RF-Gun", Jpn. J. Appl. Phys. Vol. 42, pp. 311–317, 2003
- [5] S.E.Korbly, et al., "Observation of Frequency-Locked Coherent Terahertz Smith-Purcell Radiation", Phys. Rev. Lett. 94, 054803, 2005
- [6] D. Li, et al., "Smith-Purcell Radiation with Three-Dimensional Simulation", Jpn. J. Appl. Phys. Vol. 46, pp. 601-604, 2007
- [7] J.Urata, et al., "Superradiant Smith Purcell Emission", Phys. Rev. Lett. 80, 3, 1998
- [8] Brownell, et al., "Spontaneous Smith-Purcell radiation described through induced surface currents", Phys. Rev. E. 57,1075-1080, 1998