COMMISSIONING OF NEW BEAM INTENSITY CONTROL SYSTEM AT HIMAC

Kota Mizushima ^{#,A),B)}, Takuji Furukawa^{A)}, Toshiyuki Shirai^{A)}, Shinji Sato^{A)}, Yoshiyuki Iwata^{A)},

Ken Katagiri^{A)}, Eri Takeshita^{A)}, Akihiro Higashida^{A),B)}, Koji Noda^{A)}

^{A)} Department of Accelerator and Medical Physics, National Institute of Radiological Sciences,

4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan

^{B)} Graduate School of Science and Technology, Chiba University,

Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

Abstract

NIRS has carried out three-dimensional scanning irradiation for carbon-ion radiotherapy at the HIMAC new treatment research facility since May 2011. In this irradiation, we have adopted a raster scan method to make the lateral dose distribution. For the reduction of the difference between prescribed and delivered dose distribution, it is preferable that the extracted beam-current from the synchrotron ring is low ripple, and the response to the beam-on/off switching is quick. To meet these requirements, we have developed a new beam-intensity control system with the RF-knockout slow extraction and feedback control system. In the system commissioning, we can modulate the beam-intensity in the range of thirty times while keeping the beam-current ripple below 20%.

HIMAC 新ビーム強度制御システムのコミッショニング

1. はじめに

放射線医学総合研究所(NIRS)[1]では、重粒子 線がん治療用加速器 HIMAC を用いて、1994 年の治 療開始以来、5000 名以上の患者に対して重粒子線 治療を行ってきた。更なる治療照射の高精度化を目 指し、これまでの拡大ビーム照射法による治療と並 行して、2010 年に完成した新治療研究棟で、2011 年5月から3次元スキャニング照射法による治療が 行われている。

NIRS スキャニング照射[2]では、三次元的な線量 分布の形成に、ハイブリッドラスタースキャン法[3] とレンジシフターと呼ばれる複数枚の厚さの異なる PMMA プレートを用いている。ハイブリッドラス タースキャン法では、ターゲット内に配置されたス ポットと呼ばれる小領域毎に照射線量を制御し、ス ポット移動間もビームを停止しないことで、高速な スキャニング照射が可能となる。そのため、スポッ ト間線量を正確に管理することが重要となるが、 NIRS スキャニングシステムでは、ビーム強度を一 定に保つことで制御可能にしている。レンジシフ ター駆動中は、ビームを一時停止し、駆動完了とと もにビーム出射を再開する。このビームオン・オフ の切り替えは1回の治療照射で数十回程度行われる。 計画線量と実照射線量の分布誤差を減らすために、 照射ビーム強度の時間変動を抑え、ビームオン・オ フの応答時間を速くすることが求められる。更に、 スキャニング電磁石性能を最大限に活かし、照射時 間を短縮するためには、ビーム強度をスライス毎に 変えられることが望ましい。それら要求に応えるた め、過去の研究[4]に基づき、RF ノックアウト (RFKO) 法[5]を用いたビーム強度フィードバック 制御システムを新たに開発し、新治療研究棟におい

てシステムのコミッショニングを行った。

2. ビーム強度制御システム

2.1 システムの概要

HIMAC ビーム強度制御システムは、図1 に示し たブロックダイアグラムのように、2 台の RFKO 制 御器 (RFC1. RFC2) とシステムシーケンス制御器 (SC) で構成される。それぞれの RFC は、Low-Level RF 信号発生器とフィードバック振幅制御器と しての二つの機能を併せ持つ。ビーム強度フィード バック制御のために、照射ポートにある電離箱と ビームダンプシャッター手前にある二次電子モニ ター(SEM)を用いており、それぞれの測定値は IFC 回路を通して2台の RFC に入力される。ビーム 強度目標値は、照射制御システム (NIRR) によっ て設定される。また、HIMAC シンクロトロンから 供給するビームエネルギーは、可変エネルギーコン トローラ (VE) によって制御される。ビームオフ 中には、ビーム漏れを防ぐために、リング内の2台 の高速四極電磁石(QDS)を励磁して、共鳴条件か

図1:HIMAC ビーム強度制御システム

[#] mizshima@nirs.go.jp

らベータトロン振動数を離している。

2.2 RFKO 制御器

図2に示したように、ビームスピルのリップルを 低減するため[6]、RFC 内には 3 つの DDS を取り付 けている。それぞれの DDS は、主にビームを拡散 する 2 つの FM 帯域成分 (DDS1, DDS2) と、出射 ビーム電流のリップル、スパイクを低減するための 単一周波数成分[7] (DDS3) に役割が分けられてい る。各 DDS からの出力は、加算器での合成後に、 最後段の VCA でフィードバック制御される。VCA ゲインは、PI 制御により 0.1 ms 毎に変調される。 DDS1, DDS2 と、DDS3 の電圧比が大きいほど、 ビームオン時に生じるビーム電流スパイクが減らせ ることが分かっていた。だが一方で、フィードバッ クに対するビーム電流の応答が速くなることから、 ビームオン時にオーバーシュートなどによって、 ビーム強度が不安定になりやすいことも新たにわ かった(図3(a))。この不安定性を避けるため、 各 DDS の後段に、時間制御で電圧比を変化させる ための VCA を設けた。この 3 台の VCA で、RF 出 力開始から1 ms で電圧比が 1:1:1 から 1:1:2 になる ようにゲインを変化させている(図 3 (b))。そ れにより、ビーム強度と RFKO 電圧の滑らかな立ち 上がりを実現できた。

図2: RFC 内部ブロックダイアグラム

図3: DDS ゲイン変調によるビームオン制御

2.3 フラットトップ延長運転

NIRS スキャニング照射は、シンクロトロンの ビームエネルギー可変パターンとフラットトップ延 長運転を用いている[8](図 4)。これにより、シン クロトロンのデューティ比を最大限に向上させ、照 射時間の短縮化を目指している。現在の治療照射で は、図 4 (b)、(c)、(d)のように、照射部位の 深さに合わせた1エネルギー段のみを使用している が、将来的には、図5に示したように、照射中にシ ンクロトロンで連続的にビームエネルギー変更を行 う。厚いレンジシフターの使用によるビームサイズ の増大を防ぎ、最終的には、エネルギー段を増やす ことでシンクロトロンでのエネルギー変更のみで治 療照射を行うことを目標としている。

フラットトップ延長運転において、一照射完了に

図6:フィードバックゲイン閾値による再入射制御

表1	実験パラメーター		
Energy of ¹² C ⁶⁺	430 MeV/n	350 MeV/n	290 MeV/n
Betatron tune (Q_x/Q_y)	3.679/3.131	3.679/3.128	3.679/3.133
Revolution frequency	1.687 MHz	1.589 MHz	1.497 MHz
Extraction beam rate	$\begin{array}{l} 7.6\times10^6-\\ 2.3\times10^8 \text{ pps} \end{array}$	$\begin{array}{c} 8.4\times10^6-\\ 2.5\times10^8\ pps \end{array}$	$9.3 \times 10^{6} - 2.8 \times 10^{8} \text{ pps}$
FM center frequency of transverse RF-field	1.149 MHz	1.084 MHz	1.021 MHz
Bandwidth of FM	6.0 kHz	7.9 kHz	7.5 kHz
Single frequency of transverse RF-field	1.138 MHz	1.074 MHz	1.012 MHz

必要な粒子数をシンクロトロン一周期で確保できな い場合には、ビームの再入射制御を行わなければな らない。そのため、ビーム強度制御システムでは、 リング内の DCCT モニターを用いて、周回ビーム電 流の閾値制御により再入射タイミング制御を行って いる。また、図6に示したように、フィードバック 制御電圧にも閾値を加えることで、様々な状態変化 に対してより柔軟に安定した制御を実現している。

2.4 ビームプレヒーティング

これまでのビーム強度フィードバック制御におい て、加速後のビームエミッタンスの日々、またはパ ルス毎の変化は大きな弊害となっていた。それは、 図7(a)、(b)のように、フィードバック制御の オーバーシュートや発振等によりビーム電流スパイ クを引き起こす要因となるためである。そこで、新 ビーム強度制御システムでは、ビーム加速後の照射

前に、出射ラインのシャッターを閉めたまま、500 ms 間ビーム出射シーケンスを行うこと(ビームプ レヒーティング)で、エミッタンスの非再現性によ るフィードバック制御の不安定性を回避した(図 8)。これにより、照射開始のビームオン応答の高 速化と安定化を実現できた。また、照射中にビーム オフが 5 秒以上行われる場合にも、200 ms のプレ ヒーティングを行うことで、図 7 (c)のように、 ビームオフ中のエミッタンス増加が生じても、ビー ム電流スパイクを避けることができる。ビームプレ ヒーティング中には、ビームシャッター上流に設置 されている SEM を用いることで、ビーム強度制御 を行っている。

3. コミッショニング

新治療研究棟において、新ビーム強度制御システムのコミッショニングを行い、ビーム強度変調性能とビームオン・オフ切り替えの応答時間を検証した。 コミッショニング時の各パラメーターを表1に示している。ビームエネルギーは、430、350、290 MeV/n の3 種類に対して行った。図9に、350 MeV/n の炭素イオンビームを30倍のレンジで強度 変調している様子を示した。HIMACシンクロトロンでは、ベータトロン振動の三次共鳴と六極電磁石 を用いてビーム出射を行っている。図10に、ビーム強度毎のビームスピルリップルを示した。縦軸は、 50 kHzのサンプリングレートで取得したデータを、 1 ms 毎に平均化して求めたビーム強度の標準偏差である。図10の各点に記した誤差棒は、リング内 ビーム残量に対するリップル幅の変化を評価してい

図8:ビームプレヒーティング制御

図 10: ビームスピルリップル評価

る。ビームスピルリップルは、低ビーム強度を除け ば 20%以下に抑えられており、20 倍の強度レンジ では 10%以内であった。

図 11 は、図 9 でのビームオン・オフ切り替え時 のビーム電流を、強度毎に規格化して重ねたもので ある。QDS の整定時間を待つために、RF 電圧は QDS オフ指令から 3 ms 後に印加されている。ビー ム立ち上がり時間は RF 電圧の印加から 3 ms 以内で、 ビーム停止時間はビームオフ指令から 0.3 ms 程度で あった。

4. 結論

NIRS スキャニング照射では、ハイブリッドラス タースキャン法と PMMA プレートを用いて三次元 線量分布を形成している。正確な線量分布形成のた め、RFKO 法による遅いビーム取り出しとフィード バック PI 制御を用いた、新ビーム強度制御システ ムを開発した。システムの検証を兼ねて行われたコ ミッショニング試験において、20%以下のリップル 幅に保ちながら、30 倍のレンジでビーム強度変調 を行えることを実証した。ビームオン・オフ応答時 間は、それぞれ 3 ms と 0.3 ms 以内であり、NIRS ス

図 11: ビームオン・オフ応答時間評価

キャニング照射に求められる性能を十分に実現でき ていた。

参考文献

- [1] Y. Hirao et al., Nucl. Phys. A 538 (1992) 541.
- [2] T. Furukawa et al., Med. Phys. 37 (2010) 5672.
- [3] Th. Haberer et al., Nucl. Instr. and Meth. A 330 (1993) 296.
- [4] S. Sato et al., Nucl. Instr. and Meth. A 574 (2007) 226.
- [5] M. Tomizawa et al., Nucl. Instr. and Meth. A 326 (1993) 399.
- [6] K. Noda et al., Nucl. Instr. and Meth. A 492 (2002) 253.
- [7] K. Mizushima et al., Nucl. Instr. and Meth. A 606 (2009) 325.
- [8] Y. Iwata et al., Nucl. Instr. and Meth. A 624 (2010) 33.