SATURATION PHENOMENA OF VUV CHG AT UVSOR-II

Takanori Tanikawa^{#,A)}, Masahiro Adachi^{B)}, Heishun Zen^{B)}, Masahito Hosaka^{C)}, Naoto Yamamoto^{C)},

Yoshitaka Taira^{B, C)}, Jun-ichiro Yamazaki^{B)}, Masahiro Katoh^{B)}

^{A)} JSPS Reserch Fellow DC, The Graduate University for Advanced Studies [SOKENDAI]

38, Nishigo-naka, Myodaiji-cho, Okazaki, Aichi, 444-8585

^{B)} UVSOR facility, Institute for Molecular Sciences, 38, Nishigo-naka, Myodaiji-cho, Okazaki, Aichi, 444-8585

^{C)} Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603

Abstract

We report some systematic measurements such as the undulator gap dependence and seed laser power dependence on coherent harmonic generation (CHG). In the laser power dependence, we have observed a saturation of coherent harmonics' intensity. Indeed, a system of high-harmonic generation (HHG) in gas for a seed light of shorter CHG is under development.

UVSOR-II における真空紫外コヒーレント高調波の飽和現象

1. はじめに

近年、世界各地の放射光施設においてコヒーレン ト光発生の研究が活発になってきている。中でも短 波長領域の研究開発が活発であり、加速器群のみで 実現できる光共振器型の自由電子レーザー(以下、 FEL: Free Electron Laser)や、シングルパスでレー ザー発振を可能とする Self-Amplified Spontaneous Emission (SASE)型 FEL が挙げられる。さらに最近 話題となっている THz 領域のコヒーレントシンク ロトロン放射(以下、CSR: Coherent Synchrotron Radiation)は長波長領域におけるコヒーレント光発 生の一つである。また、外部からコヒーレントな レーザー光(シード光)を電子ビームに注入、すなわ ちレーザーシーディングすることで SASE の時間コ ヒーレンスを改善するシングルパス・シード型 FEL やコヒーレント高調波発生(以下、CHG: Coherent Harmonic Generation)が挙げられる。

UVSOR-II では、共振器型自由電子レーザー研究 に長年取り組んできた^[1,2,3]。そして近年は、フェム ト秒レーザーを用いることでテラヘルツ領域での CSR と深紫外領域での CHG の研究を進めてきた^[4,5]。 本研究は、CHG の更なる短波長化を実現する為に、 UVSOR-II 電子蓄積リングにおけるレーザーシー ディングを用いた短パルスで偏光可変な真空紫外 (以下、VUV: Vacuum Ultra-Violet)領域のコヒーレン ト光発生を目的としている。

2. VUV CHG のスペクトル測定のために

2.1 装置配置

実験装置配置を図1に示す。シード光となるフェ ムト秒チタンサファイアレーザーパルス (COHERENT 社製外部 RF 同期モードロック発振器 Mira 及び再生増幅器 Legend)は FEL 用光共振器上流 側よりサファイア窓を介して入射される。窓の上流 側には BK7 の集光レンズ(*f*=5000 mm)が設置されて おり、シード光は光クライストロン前段のモジュ レータで集光されるようになっている。

電子ビームとシード光を相互作用させることに よって発生したコヒーレント高調波は FEL 用光共 振器下流側に設置された光診断系及び VUV 分光シ ステムに輸送される。

図1:実験装置配置の概略図

2.2 実験条件

本実験における電子ビーム、光クライストロン及 びチタンサファイアレーザーのパラメータを表1に 示す。第3章に記述した実験において、シード光強 度に対するコヒーレント高調波強度についての測定 ではシード光パルス幅は200 fs、それ以外の測定で はパルス幅1psで実験を行った。

[#] tanikawa@ims.ac.jp

_		
	< Electron Beam >	
	Beam Energy	600 MeV
	Beam Current	~ 30 mA
	Bunch Length	161 ps
	Natural Emittance	17.5 nm-rad
	Natural Energy Spread	3.4×10^{-4}
	Revolution Frequency	5.64 MHz
	Operation Mode	Single Bunch
	<optical klystron=""></optical>	
	Period Length	110 mm
	Number of Periods	9 + 9
	K Value	6.32
	Nd	45
	<ti: laser="" sapphire=""></ti:>	
	Wavelength	800 nm
	Pulse Energy	$\sim 2.0 \text{ mJ}$
	Pulse Duration	$130~\sim~1215~fs$
	Repetition Rate	1 kHz

表1:実験で用いた各種パラメータ

2.3 実験手法

まず光診断部にて、電子ビームとシード光となる チタンサファイアレーザーの時空間アライメントを 行う。空間アライメントは CCD カメラを用いて電 子ビームとレーザー光が光クライストロンのモジュ レータ内全体に渡って一様に重なるよう行う。続い て、高速ピンフォトダイオードを用いて、電子ビー ムとシード光の粗い時間重ね合わせを行う。その後、 ストリークカメラ(浜松ホトニクス社製 C5680)を用 いて精密に時間重ね合わせを行っている。

時空間アライメント完了後、VUV 分光システム を用いて表1の条件でスペクトル測定を行った。

3. 実験結果と考察

VUV 分光器で自発高調波(以下、SE: Spontaneous Emission)とコヒーレント高調波を測定した結果、コ ヒーレント高調波は第9次高調波(波長 89 nm)まで の観測に成功した。図2に第5次の、図3に第7次 の自発高調波とコヒーレント高調波のスペクトルを 示す。図よりコヒーレント高調波のスペクトル幅は 自発高調波のスペクトル幅より明らかに狭くなった。

図 2:第5次高調波における自発高調波及びコヒー レント高調波のスペクトル

図 3: 第7 次高調波における自発高調波及びコヒー レント高調波のスペクトル

第5次の自発高調波コヒーレント高調波の波長と 強度におけるアンジュレータギャップ依存性につい て図4に、第7次のギャップ依存性については図5 に示す。

自発高調波のピーク波長はギャップに対しほぼ線 形に変化していることに対し、コヒーレント高調波 の場合ピーク波長はシード光波長の整数分の一に固 定されている。加えて、ギャップに対するコヒーレ ント高調波のピーク強度は自発高調波のそれと似た 振舞いを示している。これは以下に示す式で表すこ とができる。コヒーレント高調波のスペクトルは、

$$\frac{dI_{CH}}{d\lambda} = \frac{dI_{SE}}{d\lambda} N(N-1) |F(\lambda)|^2$$
(1)

ここで I_{CH} はコヒーレント高調波の強度, N はシー ド光と相互作用した電子数、 $F(\lambda)$ は電子バンチの フォームファクター、 I_{SE} は自発高調波の強度であ る^[6]。この場合、フォームファクターはシード光の 高調波波長において狭いピークを持っているので、 ピーク波長はフォームファクターのスペクトル依存 性によって決められる。故に、フォームファクター はアンジュレータギャップに対してほとんど依存性 を持たないのでギャップ依存性は式1の d*I*_{SE}/dλで決 まってしまう。

図 4:第5次高調波における自発高調波及びコヒー レント高調波のピーク波長及びピーク強度に対する アンジュレータギャップ依存性

図 5:第7次高調波における自発高調波及びコヒー レント高調波のピーク波長及びピーク強度に対する アンジュレータギャップ依存性

シード光強度に対するコヒーレント高調波強度に ついても測定を行った。その結果、図6に示す通り コヒーレント高調波の飽和現象が観測された。この 図において、第3次と第5次の高調波のピーク強度 について横軸をシード光のピーク強度でプロットし た。シード光のピーク強度が上がるにつれコヒーレ ント高調波強度も大きくなり、1.5GW付近で飽和を 迎えた。さらにそれを超えると2回目の飽和現象が 観測された。これはおそらくシード光によって放射 波長間隔で整列されたマイクロバンチがさらに進ん でオーバーバンチングし、その後再バンチングが起 きた結果であろうと考えている。この考察に対し至 急計算コードとの比較を行う予定である。

図 6:第3次及び第5次高調波におけるコヒーレン ト高調波強度に対するシード光強度依存性

4. 短波長 CHG に向けて

更なる短波長 CHG を目指して、今回使用したチ タンサファイアレーザーの代わりにガス高次高調波 (以下、HHG: High-Harmonic Generation)をシード光 としたコヒーレント高調波光源の開発を行っている。 現在、図7に示す通り、ガス高調波発生装置の建設 が完了した。これからはガス高調波発生実験を行い、 十分な要請を満たす光源となった時にこれをシード 光とした HHG-seeded CHG 実験を行う。

図7:ガス高調波発生装置

5. まとめ

VUV 分光器を用いた CHG 実験において、アン ジュレータギャップ依存性及びシード光強度依存性 について測定を行った。アンジュレータギャップ依 存性については、コヒーレント高調波の波長がシー ド光波長の整数分の一に固定されること、そしてコ ヒーレント高調波強度に対するギャップの応答が自 発放射光のそれに依存することを確認した。シード 光強度依存性に関しては、シード光強度の増加と共 にコヒーレント高調波の強度が大きくなりその結果、 飽和を観測した。さらにシード光強度を上げていく と2度目の飽和が起こることを観測した。これは電 子バンチ内のマイクロバンチがオーバーバンチング 中に再バンチングを起こしている為であると考えて いる。また短波長 CHG に向けて、シード光となる HHG 光源を準備しており、現在 HHG 装置の建設が 終了した。

6. 謝辞

本研究は、科学研究費補助金基盤研究 B および 量子ビーム基盤技術開発プログラムの支援を得て行 われた。

参考文献

- [1] M.Hosaka, et.al, UVSOR Activity Report 2007, 2008.
- [2] M.Hosaka, et.al, Nuclear Instruments and Methods in Physics Research A 507, 289-293, 2003.
- [3] H.Žen, et.al, Proceedings of FEL 09, Liverpool, England, 2009.
- [4] M.Labat, et.al, The European Physical Journal D, VOL44, Number1, 187-200, 2007.
- [5] M.Labat, et.al, Proceedings of FEL 08, Gyeongju, Korea, 2008.
- [6] O.Grimm, Proceedings of PAC 07, New Mexico, USA, 2007.