RF Source of Superconducting RF Test Facility(STF) in KEK

S. Fukuda¹, M. Akemoto, H. Katagiri, T. Shidara, T. Takenaka , H. Nakajima, K. Nakao, H. Honma, S. Matsumoto, T. Matsumoto, H. Matsushita, T. Miura, S. Michizono, Y. Yano, M. Yoshida, S.

Kazakov, H. Hayano

High Energy Accelerator Research Organization (KEK)

1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan

Abstract

Phase-0.5 and Phase-1.0 of the Superconducting RF Test Facility (STF) have been developed since 2005 in KEK. We have completed the first RF-source and it has been used for the evaluation for the components of power distribution system (PDS) and couplers which were installed in the 5m-cryomodules. In FY2006, the second high power pulse modulator was manufactured. This was an all-in-one-cabinet modulator which mated to the basic design configuration of the international linear collider. Another R&D modulator with IEGT was also successfully operated. This report describes the recent status of the RF source of STF in KEK including the modulator, PDS and LLRF.

KEK超電導RF試験装置(STR)のRF源の開発

1. はじめに

KEKで進めている超電導RF試験装置(STF)の開発 が進行中である。当初の計画と異なりPhase-0.5とい うPhase-1.0の前段階に相当するステップが挿入され ることになった。これは先ず2台の5mクライオモ ジュールにそれぞれ35MV/m 空洞、45MV/m 空洞 をそれぞれ1台ずつ装着して冷却試験を行うもので ある。続いてそれぞれ4台ずつ設置するPhase-1.0 に 移行する。その後ILC(国際リニアコライダー計 画)の1ユニット相当を試験するPhase-2.0が計画さ れている。最近は又その先にILCの前段階の相当す るPhase-3.0計画も提案されている[1]。 (STF計画に 関しては図1参照)。RF源としては過去の資産を利 用した第1号機が稼動し始め各種の試験に利用され ている[2]。2006年から2007年夏にかけてPhase-0.5 及び1.0計画に対する開発が進んだのでこれらに関 して本稿で報告する。

2. 大電力STF長パルス電源 [3]

FY2006ではRF源No1の電源が稼動し、導波管のコ ンポーネントの開発、カプラーの試験等に利用され

¹ E-mail: shigeki.fukuda@kek.jp

た。今年に入ってからはSTF-0.5用に据え付けられ たクライオモジュール内のカップラーへもRF電力を 供給した。この電源では負荷短絡時のIGBT SW保護 等の為に、①負荷短絡等の過電流を検知してすぐSW 遮断する②それが働かない時はCrawbar回路を動作 させるという保護回路の二重化を取り入れた。その 結果、閾値設定に電圧が食われて所定の電圧がクラ イストロンにかけられなくなった。これを解決する 為には更にIGBTを10段近く増強する必要がある。こ れに対し費用が膨大にかかるという計上が製造会社 から示され結局増強は諦めた。この結果クライスト ロンからの出力は3.5MV迄出すことが難しく将来想 定されるRF電子銃用では電力を下げる必要がある。

FY2006にRF源の2台目の電源の入札が行われニチ コン社が落札した。この電源は1号機と異なりILCの BCD(基礎設計基準)に合致した1筐体に全てが収納 された電源である。ニチコン社はパルストランスの 入札も落札したので一体とした製造と試験が可能で あり現在それらの総合試験が進行中である。この電 源の仕様を表1のNo.2 PS部(黄色)に示した。パルス トランスの昇圧比は1:15である為に厳密には BCD(1:12)に合致していない。現在一次側単体の試

云 1 Specification of Modulator				
Item	Unit			
Modulator No		No.1 PS	No.2 PS	
Klystron		TH2104A	TH2104C	MBK
Klystron applied voltage	kV	140	130	115
Klystron beam current	Α	107	96	132
Pulse width(70%-70%)	ms	1700	1700	1700
Rise time	ms	200	200	200
Pulse flat top(90%-90%)	ms	1370	1370	1370
Flatness within pulse duration	%	0.5	0.5	0.5
Repititiom	Hz	5	5	5
duty		0.0085	0.0085	0.0085
Step-up Ratio of PT		1:6	1:15	1:15
Pimary Voltage	kV	23.3	8.7	7.7
Primary Current	Α	642	1440	1980
Primary Impedance	Ω	36	6.04	3.9
Peak Power of Modulator	MW	15	12.5	15.2
Average Power of Modulator	kW	128	106	129

図2: 左図:出力パルス波形(青;電圧、緑;電流)及 びバウンサー回路の電圧(黒)、電流(赤)。右図:バ ウンサー回路タイミング変更とパルス平坦度の関 係

験を行っており、水負荷にて最大定格まで試験が終わった。負荷を短絡させた時の過電流に対する速い 遮断試験等も終了した。又、バウンサー回路を動作 させた時のパルスサグ補償も良好であった。この時 の波形を図2に示す。

以上とは独立にTMEIC社(三菱東芝)がIEGTを用 いたパルス電源をKEKと共同研究で開発し、STF2号 ステーションで試験を行った[4]。パルス性能、負 荷短絡時の過電流に対する高速遮断回路の動作等満 足すべき結果を得た。従って半導体SWを用いた大電 力長パルス電源は3台が稼動したことになり、その 技術は確立したと評価できる。

3. 電力分配系 (PDS:Power Distribution System)

FY2006から2007にかけてSTF-0.5計画の為にSF等 のクライストロンギャラリーから地下のトンネンま

図3:上:信号分配系の模式図。下:トンネル内の鳥瞰図

図4 現在の状況写真。上左図:45MV/m空洞側の PDS。上右図:35MV/m空洞側のPDS。下左図:ツ リー型PDS。下右図:比例分配型PDS。

での導波管の敷設を行った。図3の上図にあるよう な配置を下図のようなレイアウトで行うことを最終 的に決めた。このPDSを地下部に設置した場合、こ の評価作業と、クライオモジュール・空洞の各種試 験とが干渉するので、先ずはSTF-0.5 に必要なもの 1式ずつを地下に設置した。残りのセットは独立に 地上部に組み立て、必要な評価試験を行うこととし た。現状の様子は図4の写真に示した。これらの セットと試験については別報告を参照のこと[5]。

図3のレイアウトにあるように空洞への電力分配 は3dBハイブリッドで分配するツリー型電力分配系 (3dB Hybrid PDS)と分配比を順番に変えていく線形 電力分配系(TESLA-Type PDS)を併用している。最初 はすべての空洞入り口に空洞からの反射をRF供給系 から分離するためにサーキュレータを取り付けるが 将来価格の高いサーキュレータを省略するための R&Dに備えるためである。又図中では位相器も入る ことになっているが現在は検討中で固定の直管とU ベンドの組合せで代用している。両方式のPDSの先 には35MV/m 空洞と45MV/m 空洞という異なるタ イプの空洞が入るために所要電力が異なる。従って 最初の3dB電力分配器にはHybridのボタンの挿入長 を変えることで2.5~3.5dBの調整が可能なようにし た。WR650導波管内では2.5MWぐらいを境目に1気圧 空気の内部雰囲気では放電の可能性があるために乾 燥窒素または空気の加圧を考えている。加圧部とカ プラーを区切る安価なRF窓も開発する必要がある。

2007年度では動燃やJHPの資産の導波管系を活用 する以外に、導波管コンポーネントとして、ロシア 製と性能価格ともに拮抗できる500kWクラスのサー キュレータの国産化、可とう性の優れたフレキシブ ル導波管、ダミー、RF窓、位相器等を開発した。更 にILCのコスト要求を満たす規格を実現すべく努力 する必要がある。

4. LLRF

Phase-1.0に向けた空洞制御のLLRF系はほぼ完成 した。STF-0.5を念頭に置いた2空洞のベクターサム に対するデジタルフィードバックの結果を図5に示

図5:2空洞に対するディジタルフィードバッ クの結果

す。この結果は、クライストロンが無かったり空洞 模擬器がMixerの後に入るなど実空洞の場合と異な るが基本的な構成要素をすべて使った総合試験の結 果である。ベクターサム制御はPI制御のもとで行っ た(FF無し)。セットポイントは28000点で、最初は サグがあったが適切なFFテーブルを用いたフィード バックでサグを消すことが出来た。振幅と位相にお ける各各のノイズは±0.05%、±0.03°であった。

インターロック系では現在のPLCの代わりにFPGA が組み込まれたコマーシャルなLinux(SUZAKU-V/Atmark Techno)を用いた簡単なインターロックシ ステムが開発された。FPGAチップ内では入力信号を 使って幾つかの簡単な論理計算をしてインターロッ ク信号を作る。uClinuxというOSを持つPowerPCが走 り信号のステータスはUARTというトランシーバと uClinuxで行き来する。GUIパネルを通してユーザは 操作したり、ステータスを見ることが出来る[6]。そ の他、高周波計測、制御関係でもFPGAの応用が進め られている[7]。

新しい試みとして、複数の中間周波数を用いたIF 混合法によるデジタルフィードバックが進展中であ る。普通はベクターサムをとって制御する場合空洞 の数だけADCを必要とするが、例えば2つの中間周波 数を用いてやるとADCは半分に減らすことが出来る。 図6にIF混合法の概念を示した。この例では2つのIF でdown-converted信号は合成器(IF1+IF2)で混合さ れ、この信号は適切なフィルターでデジタル的に IF1とIF2へ分離される。2台の空洞シミュレータを 用いたFB運転時におけるI/Q成分及び振幅・位相の測 定結果を見ると良い結果が得られた[8]。

導波管内の放電はアークディテクターで検出して インターロックをかけるが今までの比較的径の太い 光ファイバーを用いたフォトカップラーによる検出 から高電圧が不要で高感度を有するコンパクトな光 センサーモジュール(H5784/Hamamatsu Photonics) に変更した。高い感度を有する為に小さい径のより 安価な光ファイバーが使えるようになった[9]。

5. 国際リニアコライダー計画との関係

本STFの計画と平行して、国際リニアコライダー (ILC)の為の国際設計作業が平行して進められている。従ってSTFのいろいろな仕様やR&Dは勝手にKEK

図6 IF混合法の概念図

で行って良い訳ではない。電源やPDSは試験ではILC のBCDに沿った基準でコンポーネント等を製作して いる。本論分ではクライストロンについて触れてい ないが、BCDでは6~7ビームを用いた10MWマルチ ビームクライストロンが基準となっている。従って Phase-2.0ではこのクライストロンを購入する予定 であるが、2007年度に日米共同で1本東芝のマルチ ビームクライストロンを購入した。パルス電源では ACD(代用可能な技術基準)としてマルクス電源が提 唱され、アメリカでは稼動し始めた。この技術も近 く日本で確かめる必要があると思われる。

6. まとめ

現在KEKで進められているSTF-0.5及びSTF-1.0に 対するRF源の現状について報告した。全体計画は遅 れ気味に進んでいるが、RF源に関しては順調に進ん でいる。今後はILC計画の設計スケジュールと歩調 を合わせて進める必要がある。

参考文献

- [1] 早野「超伝導RF試験設備の現状報告」本発表会.
- [2] 福田,他「KEK超電導RF試験装置(STF)のRF源の開 発」第3回加速器学会,pp.130-132(2006).
- [3] 明本,他「STFに於ける10MWクライストロン用パル スモジュレータの開発」本発表会.
- [4] 左右田,他「長パルスモジュレータ用 IEGTスイッチの開発」、本発表会.
- [5] 竹中,他 「ILC計画のSTF0.5およびSTF1における導 波管の現状」本発表会.
- [6] 三浦,他「FPGAを用いたファーストインターロック システム高周波源;制御」本発表会.
- [7] 片桐,他 「高周波計測・制御用FPGAボードの評価」 本発表会.
- [8] 松本,他「複数の中間周波数を用いたデジタル低電力 RF制御系の開発」、本発表会.
- [9] 矢野,他「光電子増倍管を利用したアークディテク ターの開発加速器運転」本発表会.