DEVELOPMENT OF INDIRECT-COOLING RADIATION-RESISTANT MAGNETS

Hitoshi Takahashi^{1,A)}, Keizo Agari^{A)}, Erina Hirose^{A)}, Masami Iio^{B)}, Masaharu Ieiri^{A)}, Yoji Katoh^{A)}, Akio Kiyomichi^{A)}, Michifumi Minakawa^{A)}, Ryotaro Muto^{A)}, Megumi Naruki^{A)}, Hiroyuki Noumi^{A)}, Yoshinori Sato^{A)}, Shin'ya Sawada^{A)}, Yoshihiro Suzuki^{A)}, Minoru Takasaki^{A)}, Kazuhiro Tanaka^{A)},

Akihisa Toyoda ^{A)}, Hiroaki Watanabe ^{A)}, Yutaka Yamanoi ^{A)}

^{A)} Institute of Particle and Nuclear Studies, KEK

1-1 Oho, Tsukuba, Ibaraki, 305-0801

B) RIKEN

2-1 Hirosawa, Wako, Saitama, 351-0198

Abstract

The K1.8D1 magnet is located just downstream of a production target in the J-PARC hadron experimental hall and exposed to huge amount of radiation and heat. It is placed in a large vacuum chamber, instead of using vacuum pipes located within the pole gaps, because beam pipes are closer to the beam than the magnet poles and more difficult to cool sufficiently without tritium production. We have adopted indirect-cooling mineral-insulation-cable (MIC) coils for the K1.8D1 magnet. They have the great advantages that the mechanical strength and the insulation performance can be significantly improved by avoiding the use of ceramic insulation pipes, because electric circuits are completely separated from water pass. We have made a indirect-cooling MIC coil for the K1.8D1 using 1000-A-class solid-conductor MICs and stainless-steel tubes. We have tested its operation in a vacuum chamber, and we have successfully fed the current of DC 1000 A to the K1.8D1 coil in vacuum.

間接水冷型超耐放射線電磁石の開発

1. はじめに

現在茨城県東海村で建設中の大強度陽子加速器施 設(J-PARC)ハドロン実験ホール^[1]では、50GeV、 750kWの大強度1次陽子ビームを2次粒子生成標的T1 に照射し、そこで生成されるK中間子やπ中間子、 反陽子などの2次ビームを用いて、ハイパー核実験 やK稀崩壊実験、ハドロン分光実験といった様々な 原子核素粒子実験が行われる予定である。全ビーム パワーのうちの30%が開放されるこのT1標的の下流 では、磁石等のビームライン機器がこの大量の放射 線と熱に晒されることになる。特に、磁石の磁極よ りもビーム中心に近い真空ビームパイプは、トリチ ウム生成の問題もあり、十分に水冷することが非常 に難しい。そこで、ビームパイプを置く代わりに、 大型真空箱の中に電磁石全体を入れて運転する^[2]。 この真空箱には、2次ビームライン最上流部の電磁 石が合計3台収納されるが、ここでは、その中でも 最も上流に置かれるK1.8D1電磁石について詳しく 述べる。

2. K1.8D1電磁石

図1にK1.8D1電磁石の3次元構想図を示す。この 磁石は、2次ビームラインK1.8の最上流要素であり、 まさにT1標的の直下流に位置する電磁石である。

¹ E-mail: hitoshi.takahashi@kek.jp

ビームライン要素としての機能は、ギャップ80mm、 中心経路長800mmのC型偏向電磁石であるが、過酷 な環境に耐えられるよう、特別な構造を持つ。磁石 上部には高さ計3mの遮蔽体が取り付けられ、その 上に真空フランジが付く。これは、メンテナンス時 の被曝量を減らすために、真空箱の蓋を床から5mの 高さに位置させ、遮蔽ブロックも真空の中に入れて、 磁石本体と一体となって出し入れするようなプラグ 構造にしたものである。真空中で使用するため、鉄 芯や鉄遮蔽体等は防錆塗料を塗る代わりにめっきす る。大量の散乱粒子による発熱に対するため、標的 との間にコリメータを置いた上で、鉄芯自体も水冷 する。コイルの線材には無機絶縁ケーブル (MIC) を用い、さらに、温度スイッチや水配管のコネクタ 等も含め、ありとあらゆる部品から有機物を排し、 耐放射線性を極限まで高めている。

3. 間接水冷型無機絶縁コイル

3.1 コイルの構造

標的直下流という最も放射線の厳しい環境に置か れるK1.8D1電磁石では、中実型のMICを用いた間接 水冷型のコイルを採用した。このMICは、図2左の ように内部に穴のない構造をしている。通常のホロ コンのように導体内に直接水を流して冷却するので はなく、図3のように、水配管の層とMICの層を交 互にSUSケース内に積み、最後にケース内を半田で

はんだ充填後

図2:MICの断面図

図3:間接水冷型MICコイルの断面図

充填することで導体と水との熱伝達を確保する。こ の構造のおかげで、電気回路と冷却水路がはじめか ら完全に分離されるので、中空MICコイルの弱点 だったセラミック絶縁チューブが不要となり、最高 の耐久性が実現される。特に、今回の用途のように 真空中に置かれる場合、真空への冷却水導入部から コイル中まで全て1本の継ぎ目なしSUSチューブで 製作することが可能になるので、真空中での水漏れ

図4:K1.8D1電磁石用間接水冷型MICコイルの製作

図5:仮ヨークや真空フランジと組み合わせた K1.8D1コイル

の危険性を極限的に小さくできる点で有利となる。 一方、除熱効率は中空MICを用いた直接水冷型コ イルよりも劣る。特に、空気への放熱がなくなる真 空中では、この問題が顕著である。実際、小型のテ ストコイルを用いて真空中で通電試験を行ったとこ ろ、半田で充填されているコイル内部は水冷される ので問題なかったが、半田に埋められない導体接続 部は熱の逃げ場がなく、定格電流に達する前に 200℃以上の高温になってしまっていた。しかし、 半田に充填されない部分の構造を見直してその経路 長を可能な限り短くし、さらに表面積の広いブス バーを無機塗料で黒く塗って輻射率を上げる等の改 良を行った結果、最高200℃以下で定格のDC1000A まで安定に通電することが出来るようになった^[3]。

このR&Dの成果をもとに、我々は実機K1.8D1電 磁石用の間接水冷型MICコイルを製作した。その各 工程での写真が図4である。中実MICとSUSチュー ブとで個別に巻いたパンケーキをSUSケース内に積 み、そこに半田を充填して、最後にSUSケースの蓋 を溶接した。

3.2 通電試験

通電試験は、KEK-PS東カウンターホール内に建 設された真空槽モックアップで行った。これは、直 径約2m、高さ約1.2mの真空容器に、メンテナンス スペースを模擬したエリアを隣接して設置したもの で、実機の大型真空箱で使用する予定のポートやコ ネクタ類の試験やメンテナンス手順の検証を行うこ とを目的としたものである。図5が、通電試験を行

雰囲気	大気	真空	
黒塗り	あり	なし	あり
MICつなぎブスバー	106.1	166.7	142.2
MICシース	72.0	101.8	95.4
SUSケース	43.1	52.9	53.1
入水温	22.3	24.7	24.5

表1:DC1000A通電時のK1.8D1コイル各 部の最高温度(℃)

うために、製作した間接水冷型MICコイルを仮ヨー クやフィードスルー付き真空フランジと組み合わせ た状態の写真である。モックアップの真空容器にこ のK1.8D1電磁石用コイルを入れ、大気開放した状 態と真空に引いた状態とで通電試験を行った。

その結果が表1である。真空度は0.3~0.4Pa程度 であった。輻射率向上のための黒塗りを行わない状 態でも200℃より十分低い温度に抑えられており、 良好な結果が得られたものと判断している。

4. まとめ

二次粒子生成標的下流の真空ダクトの熱問題を解 決するため、我々は大型真空箱の中に電磁石を入れ るシステムを考案し、真空箱内に設置する電磁石に は、機械的強度や絶縁の信頼性の高い間接水冷型無 機絶縁コイルを採用した。空冷の効かない真空中で の除熱効率の問題も克服し、その成果をもとに実機 K1.8D1電磁石用の間接水冷型MICコイルを製作した。 実際に真空中で通電試験を行ったところ、十分実用 的な温度で運転できることが確かめられた。今年度 中に全体を組み立てて、電磁石として完成させる予 定である。

謝辞

この研究は、文部科学省科学研究費補助金若手研 究(B) No.15740166、基盤研究(A) No.15204024、基盤 研究(B) No.1534008、及び基盤研究(A) No.17204019 の支援を受けて行われた。

参考文献

- 田中万博他, "J-PARC大強度陽子加速器施設原子核素粒 子実験施設建設グループハドロンビームラインサブ グループ第2次中間報告書", KEK-Internal 2004-3, July 2004.
- [2] H. Takahashi, et al., "Magnet Operation in Vacuum for High Radiation Environment near Production Target", IEEE Trans. Appl. Supercond. Vol.16 No.2 (2006) pp.1346-1349.
- [3] 高橋仁他,"間接水冷型超耐放射線電磁石の開発",第3 回日本加速器学会年会・第31回リニアック技術研究 会, August 2006.