DESIGN OF SUPERCONDUCTING COILS FOR AN ECR ION SOURCE

Jun-ichi Ohnishi, Takahide Nakgawa, Hidehiro Higurashi, Masanori Kidera, and Akira Goto RIKEN Nishina Center 2-1 Hirosawa, Wako-shi, Saitama, 351-0098

Abstract

The superconducting coils for a 28 GHz ECR ion source have been designed. They consists of six solenoids and a set of sextupole excited individually. The peaks of the mirror magnetic field are 3.8 T and 2.2 T in the rf injection and the beam extraction sides, respectively. Conductors of 0.92 mm x 1.25 mm and ϕ 1.15 NbTi/Cu are used. The magnetic force acting on the cold mass was calculated to be 100 kN maximum. In the quench simulation, the maximum induced voltage of the sextupole is 1100 V and the maximum temperature rises are 110 K and 84 K in the sextupole and the solenoids, respectively.

ECRイオン源用超伝導コイルの設計

1. はじめに

RIビームファクトリー^[1]では昨年3台のサイクロ トロンのコミッショニングが行なわれ、今年3月に 核子あたり345MeVのウランビームの加速に成功した。 5月にはこのウランビームにより最初の新同位元素 が同定されている。イオン源におけるウランビーム U³⁵⁺の強度は2000enAであるが、2回の荷電変換とリ ニアックと4台のサイクロトロンにおけるビーム通 過効率により最下流で得られる345MeV/uのウラン ビームU⁸⁶⁺の強度は2~4enAまで減少する。このため、 ビーム強度を増加させることが緊急の課題である。 最近、ECRイオン源のマイクロ波の周波数を18GHzか ら28GHzに増加することにより、U³⁵⁺など高い電荷数 のビーム強度が著しく増加することが、LBLなど他 研究所において報告されているため^[2]、我々は 28GHzに対応した超伝導ECRイオン源の早期の導入を 目指し、基本設計を行なった。

2. 超伝導コイルの配置と磁場

図1に28GHzECRイオン源の超伝導コイルの配置を 示す。6個のソレノイドコイルSL1~SL6の内側に6 極コイルが置かれた構成で、6極コイルとソレノイ ドコイルの内径はそれぞれ204mmと340mmである。こ れらはCu安定化NbTi多芯線の密巻コイルで、一体化 されて液体ヘリウムにより浸漬冷却される。

図2に中心軸上のソレノイド磁場Bzと室温ボア (φ174)に置かれたプラズマチェンバーの内壁面 上(内半径75mm)の径方向の6極磁場Byを示す。マ イクロ波導入側の最大磁場は3.8Tで、ビーム引き出 し側は2.2Tである。28GHzのマイクロ波に対するE CR磁場は1Tである。SL1~SL6は個別電源で独立に 励磁をできる。SL2とSL5はミラー磁場を作っている SL1、SL6とは逆極性になっており、磁場の平坦部を 軸方向に広くしている。

一方、径方向の磁場は6極コイルで生成し、プラ

ズマチェンバー内壁面で磁場強度が2T以上となるように設計した。図から分かるように中心部は6極コイルに鉄の磁極(長さ340mm)を使用することにより10%程度磁場を増加させている。6極コイルの最大経験磁場はSL1中心付近の外径側で与えられるので、その部分には鉄磁極は用いない。6極コイルの端部はワイヤーモーションが起きやすいため、コ

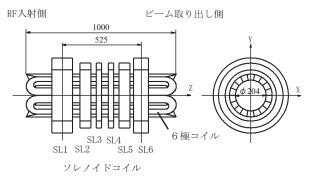


図1:超伝導コイルの配置

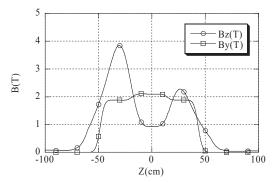


図2:Bzは中心軸上のソレノイド磁場、By はプラズマチェンバー表面(x=75mm)におけ る6極磁場の分布を示す。

	SL 1	SL 2	SL 3	SL 4	SL 5	SL 6	Sextupole
内半径(mm)	170	170	170	170	170	170	102
外半径(mm)	250	215	215	215	215	250	142
幅/長さ(mm)	135	75	35	35	75	100	961
ターン数	108	60	30	30	60	80	31
層数	87	49	45	45	49	87	42
最大平均電流密度(A/mm2)	135	150	90	90	127	115	190
電流値Iop(A)	155	172	105	105	146	132	248
Bmax(通常) (T)	7.2	5.2	3.3	3.2	4.8	5.5	6.9
Ic(A)	195	278	213	218	252	216	307
Iop/Ic	0.79	0.62	0.49	0.48	0.58	0.61	0.81
インダクタンス(H)	38.80	4.47	1.15	1.15	4.45	23.56	6.45

表1:超伝導コイルの諸元

表2:	超伝導線材(の諸元
-----	--------	-----

	ソレノイド1, 2, 5, 6 6極コイル	ソレノイド3,4
裸線寸法 (mm)	1.15 x 0.82	Φ1.09
絶縁後寸法 (mm)	1.25 x 0.92	Φ1.15
銅比	1.3	6.5
RRR	> 100	> 100
フィラメント径 (μm)	40	80
Ic (A) at 4.2K		
5T	> 1050	> 340
6T	> 840	
7T	> 620	

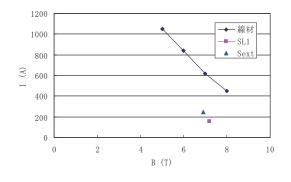
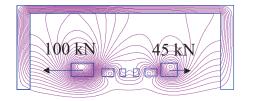



図3:ロードライン

イル長を長い目にしてソレノイド磁場の影響を小さ くしている。

表1にコイルのパラメーターを示す。超伝導コイ ルの最大経験磁場はソレノイドコイルSL1で7.2T、 6極コイルは6.9Tである。Icに対する負荷率は両 コイルとも80%程度である。磁場計算に は"poisson" と"0pera3d" を使用した。

超伝導線の諸元を表2に示す。超伝導線はCu安定 化NbTi多芯ケーブルを使用する。SL3とSL4はΦ1.09mmの丸型線、その他のコイルは0.89 mm x 1.25mmの平角線を使用する。表1に線材の仕様を示 す。小型冷凍機への熱負荷を抑制するため、細い超 伝導線を用いコイル電流値を小さくしている。6極 コイルとソレノイド1は経験磁場が高いので、平角 線は低銅比(1.3)の線材を使用する。

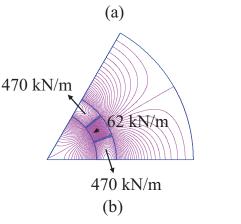


図4:コイルに働く電磁力

3. 電磁力

図4にソレノイドコイルと6極コイルに働く電磁 力を示す。計算には2次元コード"poisson"を使用 した。(a)はソレノイドコイル(SL1, SL6)と電磁ヨー ク(50mm/80mm厚)間に働く力を示す。コールド マス全体に働く力は、SL1を単独励磁した場合が最 大になり、100kNである。全コイルを定格励磁した 場合は、コイルSL2~SL5とヨーク間に働く力は力 は小さいので、SL1とSL6に働く力が相殺し、RF入 射側に約55kNの力を受ける。

(b)は6極コイル断面に働く力を示す。コイルの拡張力は1/2コイルあたり65kN/m(平均0.87MPa)、周方向に働くコイルの最大面圧は12MPaである。6極コイルはカラーまたはワイヤーなどで固定する必要があるが、構造はまだ検討できていない。

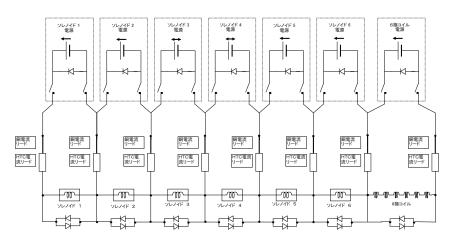


図5:コイルと電源の接続

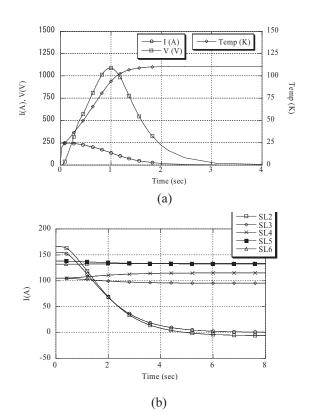


図6: クエンチ時の電流電圧波形と温度 (計算)

4. クエンチ保護

図5にコイルと電源の接続図を示す。各コイルは 個別の7台の電源で励磁する。液体ヘリウムを小型 冷凍機によって凝縮運転するため、計8本の高温超 伝導体(HTC)電流リードと銅製電流リードを直列 で用い、隣り合ったコイルで共用する。

いずれかのコイルにクエンチが発生した場合は全

電源を停止し、電源側ダイオードに還流させる。一 方、HTC電流リードの温度または電圧に異常があっ た場合は、遮断器を開き、液体ヘリウム内のダイ オードに電流を還流させ、蓄積エネルギーを消費さ せる。

図6(a)に6極コイルがクエンチした場合のコイル 電圧と温度上昇の計算結果を示す。計算コード "QUENCH"を使用した。定格電流248Aにおいて 6コイルのうち1コイルだけがクエンチした場合で、 クエンチしたコイルの両端電圧は最大1100V、コイ ル温度は110 Kとなった。コイルの設計によって電 圧がこれより高くなる場合は、6コイルをいくつか に分割してクランプする、あるいはヒーターによっ て強制クエンチさせる、などの検討が必要である。

図6(b)に6個のソレノイドコイルが定格電流値で 励磁されているときにSL1がクエンチした場合の電 流波形を示す。他のコイルはクエンチしないと仮定 した。SL2の電流値が減少しているのは、SL1と電 流の方向が反対のためである。SL4は電流値の増加 が見られるが、Icより十分低く問題のない量であ る。この時のSL1の温度は79Kとなった。

5. おわりに

今年度、ここに示した基本設計をもとに超伝導コ イルとクライオスタットの構造設計および製作を行 い、2008年夏には完成の予定である。なお、本 イオン源全体については[3]に述べられている。

参考文献

- Y. Yano, "The RIKEN RI Beam Factory Project: A status report", Nucl. Instr. Meth. Phys. Res. B 261 (2007) 1009-1013.
- [2] D. Leitner et al. "Status report of the 28 GHz superconducting electron cyclotron resonanace ion source VENUS", Rev. Sci. Instr. 77 (2006) 03A302.
- [3] T. Nakagawa et al., "SC-ECRIS for RIKEN RI beam factory project", these proceedings.