PASJ2024 THP042

SPring-8-II へ向けたベル型加速空洞における高次共振モードの検討 INVESTIGATION OF HIGH-ORDER MODES IN BELL-SHAPED CAVITIES FOR SPring-8-II

斗米貴人 *,A), 稲垣隆宏 B,A), 大島隆 A,B), 山口博史 A,B), 前坂比呂和 B,A), 正木満博 A)

Takato Tomai *,A), Takahiro Inagaki B,A), Takashi Ohshima A,B), Hiroshi Yamaguchi A,B), Hirokazu Maesaka B,A),

Mitsuhiro Masaki^{A)}

A) Japan Synchrotron Radiation Research Institute (JASRI)

^{B)} RIKEN SPring-8 Center (RSC)

Abstract

The aim of SPring-8-II Upgrade Project is to achieve low emittance and high beam current with less power, and it is scheduled for completion in 2029. The beam current will be increased from 100 mA to 200 mA, and the beam energy is reduced from 8 GeV to 6 GeV. The needed RF power will be reduced about one half of the current storage ring. We decided to reuse the currently used bell-shaped cavities, and the number of the cavity will be halved. The reduction of the beam energy leads to the weak damping force and the increase of the beam current makes the stored beam more prone to instability. The coupled-bunch instability due to Higher-Order Modes (HOM) of the cavities, especially TM_{011} mode will become an issue. We evaluated the threashold shunt impedance for the longitudinal TM_{011} mode. The results show that the obtained shunt impedance are almost on the edge of instability. One effective way to avoid the instability is to lower the impedance by sticking out the two tuner.

1. はじめに

SPring-8 は第3世代放射光施設として、1997年10月 の供用開始以来、約30年弱に亘って世界の科学技術を リードしてきた。しかしながら、世界各国において次 世代型の放射光施設が建設されている。現在、SPring-8 の光源性能の陳腐化や施設の老朽化が避けられない 状況にある。このような状況を打開し最先端の光源性 能を保つため、高輝度化・省電力を掲げた SPring-8-II アップグレード計画を策定し、準備を行っている [1,2]。 SPring-8-II では、Table 1 に示すように電子ビームのエ ネルギーが8GeVから6GeVに引き下げられること、 またビーム電流が 100 mA から 200 mA へ引き上げられ ることから、これまで問題になってこなかった加速空 洞の高次共振モード (Higher-Order Modes; HOM) による 結合バンチ不安定性が懸念される。そこで、この不安 定性について、シミュレーションによるベル型空洞の HOM の調査、低電力高周波とビームを用いた試験に よって検討を行った。本講演では、この検討結果につ いて報告する。

2. SPring-8-II における高周波空洞システム

SPring-8-II では RF システムに要求されるパラメータ が現在の蓄積リングから変更となる。現在は4ステー ションでそれぞれ4MVの加速電圧を生成し、クライ ストロンの出力はおよそ700kWとなっている。新しい リングでは1ステーションあたりの加速電圧は2MV 程度となる予定であり、加速電圧もRF電力もおよそ 半減する。そこで、1ステーションあたりの加速空洞 の数を現在の8空洞から4空洞とする。リングの周波 数は、マルチベンド化によりやや周長が短くなるため、 SPring-8での運転周波数508.580 MHzから508.764 MHz に変更となる。RFステーションにおけるRFシステム の概略図をFig.1に示す。クライストロンで生成され

た 508.764 MHz の大電力 RF は、サーキュレーター、マ ジックT、フェーズシフターを介して4台のベル型加 速空洞に供給される。この RF システムは 4 ステーショ ンに分散して設置されており、合計で16台の加速空 洞を用いて加速を行う。空洞に RF を供給するクライ ストロンや十分な帯域を持っているため新しい周波数 に対応できる。空洞も後述するチューナーの位置を調 整することにより対応する。加速空洞は Fig. 2b, 2a に 示すようなベル型の構造となっている。各空洞は上部 に取り付けられた同軸カプラーおよび円筒形のアルミ ナセラミック窓で導波管と結合しており、結合度は同 軸カプラーのループの取り付け角度によって調節され ている [3]。SPring-8 における標準的な設計では、ルー プの取付角度はビーム軸から 50°の位置で固定されて おり、このときの結合度は、TM010 加速モードに対し て β = 2 程度である。また、導波管と相対する位置に 周波数チューナー (Acc. Tuner)、それと直交する向きに 固定チューナー (Fixed Tuner) および HOM チューナー (HOM Tuner) が設置されている。チューナーの可動範

Table 1: The Designed Parameters for SPring-8-II (New) [2] and SPring-8 (Present) [4]

Parameter	SPring-8-II (New)	SPring-8 (Present)	
Beam Energy E (GeV)	6	8	
Stored Current I (mA)	200	100	
Circumference (m)	1435.428	1435.949	
RF Voltage (MV)	up to 8	16	
Momentum Compaction α	4.13×10^{-5}	1.60×10^{-4}	
Damping Time τ_s, τ_x, τ_y (ms)	13.5,15.8,21.9	4.2,8,8	
RF Frequency (MHz)	508.764	508.580	
Synchrotron Frequency (kHz)	0.7	2.2	
Revolution Frequency (kHz)	208.852	208.776	

^{*} tomai@spring8.or.jp

Figure 1: Schematic of the RF system for SPring-8-II.

Figure 2: (a) Cavity and waveguide coupling.(b) Crosssectional view of the bell-shaped cavity.

囲は、いずれも空洞内面との面一の位置を基準として -10 mm から 40 mm までとなっている。

空洞の寸法は HOM の周波数を互いにずらす目的の ため、空洞の外半径 $R = 120.0 \text{ mm} + 0.1 \text{ mm} \times N(N = -6, -4, ..., 24)$ で分類される 16 タイプが存在する。こ れにより TM₀₁₀ 加速モードの周波数もずれることにな るが、このずれは各チューナーの位置を空洞ごとに設 計・調整することで、加速モードの周波数を一定にし ている。SPring-8-II では前述の通り周波数が 180 kHz 程 度変更となるため、現在のチューナー位置からおよそ 10 mm 突き出すことで調整する予定である。

3. 縦方向の結合バンチ不安定性

結合バンチ不安定性は、蓄積リングを周回する電子 バンチが空洞に様々な HOM を励起し、それが減衰す るよりも周回バンチによる増幅が勝る場合に発生する。 シングルバンチの場合、結合バンチ不安定性の growth rate は以下の式で表される [5]。

$$\tau^{-1} = \frac{Ie\alpha f_0}{2Ef_s} \sum_{n=-\infty}^{\infty} (nf_0 + f_s) \operatorname{Re}(Z(nf_0 + f_s))$$
(1)

ここで、Iはビーム電流、Eはビームのエネルギー、aはリングの Momentum compaction factor, f_0 は Revolution 周波数、 f_s は Synchrotron 周波数、Re(Z(f))は周波数 f でのリングのインピーダンスの実部である。空洞のある HOM の周波数が Revolution 周波数の整数倍とほとんど一致 ($f_{\text{HOM}} \sim nf_0$)したとき、リングのインピーダン ス Z は HOM のシャントインピーダンス R_{sh} を用いて $\text{Re}(Z(f)) \sim R_{sh}/2$ となるため、Eq. (1) は、

$$\tau^{-1} = \frac{Ie\alpha f_0 f_{\rm HOM} R_{sh}}{4E f_s} \tag{2}$$

のように書かれる。これが結合バンチ不安定性を見積 もるうえで最も厳しい条件を与える。不安定性が起き るシャントインピーダンスのしきい値は、リング全体 での縦方向 damping time を τ_s として、 $\tau > \tau_s$ の条件で 求めることができる。さらに、シャントインピーダンス R_{sh} は空洞の形状因子 R/Q、および空洞の損失と導波管 への結合を加味した負荷 Q 値 Q_L より、 $R_{sh} = R/Q \times Q_L$ と求めることができるため、R/Qおよび Q_L を求めるこ とが重要である。

R/Qは、空洞の蓄積エネルギー Uと空洞からビーム が感じる電圧 Vを用いて、 $R/Q = |V|^2/\omega_{HOM}U$ で定義される。ビームが感じる縦方向の電圧は、電磁界シミュレーションを行い、ビーム軸方向zに沿ってz軸方向の 電場分布 E_z を積分することで得られる。

$$V = \int E_{z0}(z) \cos(2\pi f_{\text{HOM}} z/c + \phi) dz$$
(3)

ここで E_{z0} は電磁場の振幅、 ϕ はz = 0での電磁場の位相である。縦方向に電場分布を持つ共振モードはモノポールの TM_{0np} モードであるため、このモードに対してシミュレーション及び測定を行う。

電磁界シミュレーションによる HOM の 検討

4.1 HOM の周波数とインピーダンス・Q 値

SPring-8 で使用するベル型空洞のうち N = 0 となる 基準空洞について、Ansys HFSS [6] を使用したシミュ レーションを行った。空洞の固有モード解析にて得ら れた共振モードのうち、縦方向の不安定性を引き起こ す TM_{0np} モードと、横方向の不安定性を引き起こす TM_{1np} モード,TE_{1np} モードを抽出し、電磁場分布から R/Q および無負荷 Q 値を求めた。その結果を Table 2 に 示す。この結果は [7] ともよく一致した。縦方向の不 安定性を誘起する可能性が最も高いのは 900 MHz 付近 に存在する TM₀₁₁ モードであり、R/Q = 64 Ω および 無負荷 Q 値 Q_0 = 46200 といずれも高い値であること が分かった。以降では、このモードに着目して検討を 行った。また、横方向モードについては、1 GHz 付近の HOMの R/Q が著しく高くなっていた。SPring-8 の蓄積 リングには水平垂直方向のキッカーを用いた Bunch by Bunch Feedback (BBF) のシステムが備わっているが、縦 方向は備わっていない。そのため今回は縦方向の検討 を優先して行った。以下のシミュレーションおよび測 定では、空洞内の蓄積エネルギーU=1Jのの条件で縦 方向の TM₀₁₁ 固有モードの解析結果を示す。

PASJ2024 THP042

Mode	$f_{\rm HOM}$ (MHz)	$R/Q\left(\Omega ight)$	Q_0	Mode	$f_{\rm HOM}$ (MHz)	$R/Q(\Omega/m)$	Q_0
TM ₀₁₀	509	155	46800	TE ₁₁₁	710	71	50300
TM ₀₁₁	905	64	46200	TM ₁₁₀	761	195	50500
TM ₀₂₀	1087	0.0	58600	TM ₁₁₁	1077	312	43100
TM ₀₂₁	1394	6.3	51200	TE ₁₁₂	1207	128	66000
TM ₀₁₂	1445	14	41400	TE ₁₂₁	1208	2.6	94200
TM ₀₃₀	1628	8.8	48900	TM ₁₂₀	1304	32	50000
TM ₀₃₁	1863	0.3	48900	TM ₁₂₁	1529	22	40500
TM ₀₂₂	1889	0.7	70700	TE ₁₂₂	1585	50	65500

Table 2: Lists of HOMs for the bell-shaped cavity. (a) longitudinal, and (b) transverse modes are listed.

 4.2 TM₀₁₁ モードの共振周波数のチューナー位置依 存性

(a) Longitudinal Modes

5節以降に示す低電力試験およびビームを使用した 空洞試験では、近辺に存在する他のモードと TM₀₁₁ モードを区別し、同定する必要がある。そのため、共 振周波数のチューナー位置依存性がモードによって異 なることを利用して同定を行った。Figure 3a に N = 0基準空洞の TM₀₁₁ モードに対する共振周波数のチュー ナー位置依存性およびフィッティング結果を示す。な お、ここでフィッティング関数は

 $f(x) = p_0 + p_1 \arctan(p_2(x - p_3))$ (4)

の式を用いた。物理的理由は不明であるが、形状を arctan 関数で近似すると良いフィッティング結果が得 られた。この図から、-10 mm から 0 mm 付近のチュー ナーを引き抜いた位置と 30 mm から 40 mm のチュー ナーを差し込んだ位置で周波数変化が弱くなることが 分かる。差し込んだ位置でも変化が弱くなる原因は、 チューナーを差し込んでいくにつれてその軸での電場 が弱くなっていくためであると考えられる。

4.3 TM₀₁₁ モードの R/Q のチューナー位置依存性

次に、TM₀₁₁ モードの形状因子 R/Q のチューナー 位置依存性を調べた。通常、TM₀₁₀ 加速モードに対し てはチューナー位置によらずほぼ一定の値となるが、 TM₀₁₁ モードは空洞の中央に節を持つため、チューナー の位置によって電磁場の分布が変わり、R/Qが変化す る。Figure 3b に、TM₀₁₁ モードに対する R/Qの周波数 チューナー位置依存性を示す。ここでは周波数チュー ナーだけでなく HOM チューナーの自由度があるため、 HOM チューナー位置が 0 mm, 20 mm の 2 パターンで の周波数チューナー依存性を示した。この結果から、 チューナー位置のバランスが取れている場合に R/Qが 64 Q 程度となり、バランスが取れていない場合には 50 Q 程度まで減少することが分かる。

4.4 QL のチューナー位置依存性

最後に、負荷 Q 値 Q_L のチューナー位置依存性を調 べた。負荷 Q 値を求める際には、導波管の境界条件を 全吸収層 (Perfectly Matched Layer; PML) とした。これは HOM が空洞に誘起され、導波管側へ伝播したとき無反 射でダミーロードに吸収される条件をシミュレートし ている。Figure 3c に、HOM チューナーが 0 mm の場合 の結果を示す。この結果から、チューナーを差し込ん でいくにつれて Q 値が減少し、 $Q_L \sim 10000$ 程度まで下 がることが分かる。

(b) Transverse Modes

5. 低電力試験

本節では、*N* = 0 型の基準空洞を使用した低電力試 験について述べる。

5.1 測定セットアップ

測定のセットアップは、Fig. 2a と同様とした。ネッ トワークアナライザによって Ch. 1 から Ch. 2 への透過 係数 S_{21} の測定を行うため、空洞のビームポートに電 界アンテナを差し込み、空洞への入力信号 Ch. 1 とし、 ピックアップポートのループアンテナからの出力信号 Ch. 2 とした。また、空洞と導波管のカプラーのループ 角度は実機と同様 50° とし、WR1500 導波管側は開放と した。

5.2 共振周波数のチューナー位置依存性

Figure 4 に TM₀₁₁ モードの共振周波数のチューナー 位置依存性を示す。ここでは HOM チューナーの位置が 0 mm, 20 mm の場合を示している。共振周波数はシミュ レーションで行った場合と同様に S 字を描くカーブと なり、これが TM₀₁₁ モードであることを同定した。ま た、HOM チューナーを差し込んでいくにつれて、周波 数の変化が次第に大きくなることも分かった。

5.3 QL のチューナー位置依存性

Figure 4b に TM₀₁₁ モードの負荷 Q 値のチューナー位 置依存性を示す。ここでは HOM チューナーの位置が 0 mm, 20 mm の場合を示している。負荷 Q 値はチュー ナーが差し込まれるにつれて、15 000 程度から 9000 程 度に減少する様子が分かる。

Figure 3: Tuner position dependency of (a) resonance frequency, (b) R/Q and (c) loaded Q-value of TM₀₁₁-mode for the N = 0 type cavity. Red plots show the dependency at HOM tuner 0 mm and blue plots at 20 mm.

6. ビームを使用した空洞試験

本節では、SPring-8 蓄積リングにて行った、ビームを 使用した実機空洞の Q 値測定試験について述べる。

Q値の測定試験では、シングルバンチ 1 mA の設定 で C ステーションの電力供給を遮断することにより、 ビームによる HOM の誘起信号を測定した。今回は特 に N = 6型の空洞#3 号機および#4 号機、および N = 22型の空洞#7 号機に対して Q値を測定した。

Q 値の測定は、

1. 共振周波数の周波数チューナー位置依存性の測定、

2. ピックアップ信号強度の周波数チューナー位置依 存性の測定

の手順で行った。

6.1 共振周波数のチューナー位置依存性の測定

ここでは C ステーションに設置した空洞#3 についての結果について例示して述べる。まず、TM₀₁₁ モード

Figure 4: Tuner position dependency of TM_{011} mode (a) frequency and (b) *Q*-value. Red circles show the dependency at HOM tuner position 0 mm, and blue circles at HOM tuner position 20 mm.

の共振周波数チューナー位置依存性の測定を行った。 チューナーの可動範囲内で 10 mm ごとに HOM の信号 を測定した。Figure 5a にチューナー位置 30 mm でのス ペクトルを示す。このとき得られる信号スペクトルは Revolution 周波数 $f_0 = 208$ kHz ごとにサンプリングさ れ、HOM の周波数とは一致しない。そのため、図に示 した包絡線のように、以下に示すローレンツ関数

$$F(x) = A + 10 \log_{10} \frac{\gamma}{(x - f_{\text{peak}})^2 + \gamma^2}$$
(5)

でフィッティングを行うことで HOM の共振周波数を 求めた。このとき、ピーク位置の周波数 f_{peak} 、半値半幅 γ 、および A をフィッティングパラメータとした。こ のようにして各チューナー位置で測定を行い f_{peak} を求 め、共振周波数のチューナー位置依存性を調べた。そ の結果を Fig. 5b に示す。図から分かるように、シミュ レーションや低電力試験で行った通り、S 字を描く依 存性が得られており、このモードが TM₀₁₁ モードであ ることが同定された。フィッティングは Eq. (4) で行っ た。その結果、 χ^2 /NDF = 5.2/2 と良い近似結果が得ら れた。

6.2 Q 値の測定

ある周波数での強度変化をチューナー位置でスキャンすることにより、上記で得た共振周波数のチューナー位置依存性のカーブを用いて、強度の共振周波数 依存性を求めることができる。このときの半値全幅と 周波数の比が QL 値となる。このときの 902.124 MHz での強度変化およびローレンツ関数によるフィッテ **PASJ2024 THP042**

Figure 5: (a) Blue Line shows a Spectrum of TM_{011} Mode in the Cavity #3 excited by Single Bunch Beam. Red Line shows the Envelope Line of the Spectrum which Shape is expressed by a Lorenzian Function. (b)Black Circles with Errorbars show the Resonance Frequency of TM_{011} Mode at every Tuner Positions. Red Line shows the Fitting Result by the arctan Function. (c) Tuner Position Dependency of *Q*-value in the N = 6-type Cavity.

ィング結果を Fig. 5c に示す。この結果、空洞#3 について、 Q_L (#3) = 10960(80) と求められた。同様に空洞#4, #7 に対しての測定では、それぞれ Q_L (#4) = 15150(450), Q_L (#4) = 7680(140) と求められた。この結果及びシミュレーションで求めた R/Qから、シャントインピーダンスはそれぞれ R_{sh} (#3) = 0.70 M Ω , R_{sh} (#4) = 0.97 M Ω , R_{sh} (#7) = 0.49 M Ω と見積もられた。

SPRING-8-II における結合バンチ不安定 性の検討

4節のシミュレーションの結果では HOM チューナー と周波数チューナーをともに挿入する方向で、R/Q お よび Q_L が低下し、HOM による結合バンチ不安定性を 抑える方向にはたらくことが判明した。また、5節での 空洞低電力試験の結果でも、それを支持する結果を得 た。本節では、この結果をもとに考察を行う。

7.1 シャントインピーダンスの評価

Equation (2)、を用いて、SPring-8 での結合バンチ不安 定性を引き起こすしきい値となるシャントインピーダ ンスを評価すると、 $R_{sh,thre} = 4.2 \,\mathrm{M}\Omega$ となり、100 mA で は不安定性は発生しない。一方で、SPring-8-II でのしき い値シャントインピーダンスを評価すると、0.8 M Ω と なる。これは Q 値測定のデータと比較すると同程度の 値である。SPring-8-II では 16 台の空洞ですべて異なる 形状の空洞を選択することで、不安定性の原因となる TM₀₁₁ モードの周波数を互いにずらす予定であるが、1 空洞でもビームが誘起する周波数と HOM の周波数が 一致してしまうと不安定性が発生してしまう可能性が ある。

7.2 不安定性に対する対策の検討

- そこで、現在は以下のような対策を検討している。
- 1. チューナー位置を調整して、ビーム周回により誘 起する周波数と HOM の周波数をずらし、インピー ダンスを下げる
- チューナー位置をアンバランスな位置とすること でQ値, R/Qを下げる
- 3. 縦方向の Bunch by Bunch Feedback システムを導入

し、不安定性を抑制する

1. はチューナー位置の微調整により行うことができる。 現在は基本的に HOM チューナーは動かさず、周波数 チューナーのみを動かして温度変化による空洞の周波 数変化を調整しているが、各空洞の HOM の周波数を モニタリングして誘起する周波数とずらすように HOM チューナー、周波数チューナーともにフィードバック を掛けるなどして、HOM のインピーダンスを下げる調 整が可能であると考えられる。2. も同様にチューナー 位置の調整と関連しているが、HOM そのもののシャン トインピーダンスを下げる目的となる。1. と 2. の対策 を同時に行うことで、効果的に不安定性を抑制できる と考えられる。最後に 3 であるが、こちらは不安定性 が成長する前に逆方向にフィードバックを掛けて不安 定性を抑制するために使用する。縦方向 BBF は現在製 作の検討を行っている。

8. まとめと今後の予定

SPring-8-II における大電流化に伴い、これまで問題 とならなかった縦方向の結合バンチ不安定性が発生し、 電流を十分積み上げできない可能性がある。そこで、 現在 SPring-8 で運転中の加速空洞に対して TM₀₁₁ モー ドのシミュレーションおよび空洞の低電力試験および ビームを使用した試験で Q 値の測定を行った。その結 果 TM₀₁₁ モードのシャントインピーダンスがしきい値 と同程度になることが判明した。今回は 3 空洞の測定 に留まったが、今後全空洞の Q 値測定を行って評価す る予定である。また、新しいチューナーのフィードバッ ク制御の開発や、縦方向 BBF の導入の検討を進めてい く予定である。

謝辞

本研究にあたって、スプリングエイトサービスの早 賀様、渡邊様をはじめとする運転員の方々に協力いた だきました。この場を借りて感謝申し上げます。

参考文献

[1] RIKEN SPring-8 Center, "SPring-8-II Conceptual De-

sign Report", Nov. 2014, http://rsc.riken.jp/pdf/ SPring-8-II.pdf

- [2] H. Tanaka *et al.*, "Greener Upgrading of SPring-8 to Produce Stable, Ultrabrilliant Hard X-ray Beams", Journal of Synchrotron Radiation, to be published.
- [3] M. Akemoto and Y. Yamazaki, "High-power Input Coupler with a Cylindrical Alumina Window", Proc of LAM1990, 13a-11, https://www.pasj.jp/web_publish/lam1990/ 13a-11.pdf
- [4] SPring-8 Webpage, "Storage Ring", http://www.spring8.

or.jp/ja/about_us/whats_sp8/facilities/
accelerators/storage_ring/

- [5] K. Kubo, "ビーム不安定性", OHO'91, http://accwww2. kek.jp/oho/OHOtxt/OHO-1991/txt-1991-%E2%85%A2. pdf
- [6] Ansys HFSS, https://www.ansys.com/
- [7] H. Ego *et al.*, "Higher-order Modes in the Bell-shaped Singlecell Cavity of the SPring-8 Storage Ring", NIMA 383 (1996) 326.