PASJ2020 WEPP05

ミューオン加速用Lバンド低エネルギーリニアックの概念設計 CONCEPTUAL DESIGN OF A L-BAND LINAC FOR MUON ACCELERATION

近藤恭弘 *A, B)、大谷士将 C)

Yasuhiro Kondo^{* A, B)}, Masashi Otani^{C)} ^{A)}Japan Atomic Energy Agency (JAEA), ^{B)}Ibaraki University, ^{C)}High Energy Accelerator Research Organization (KEK)

Abstract

A muon linac development for a new muon g-2 experiment is now going on at J-PARC. Muons from the muon beam line (H line) at the J-PARC muon science facility are once stopped in a silica-aerogel target, and room temperature muoniums are evaporated from the aerogel. They are dissociated with lasers, then accelerated up to 212 MeV using a linear accelerator. In the current reference design, a 324-MHz radio frequency quadrupole (RFQ) and an interdigital H-mode drift tube linac (IH-DTL) are used for the low beta acceleration. We propose a 1300 MHz (L band) RFQ and coupled cavity drift tube linac (CCDTL) instead of the 324 MHz RFQ and IH-DTL as an alternative to simplify the configuration of the muon linac. In this paper, the conceptual design of this low energy section of the muon linac is described.

1. はじめに

ミューオン異常磁気モーメント (g – 2)_µ は素粒子標 準模型を超える物理を探索するうえで非常に有用なプ ローブである。現在までのところ、(g – 2)_μの最高測定 精度は、米国ブルックヘブン国立研究所の E821 [1] で の 0.54 ppm であり、この実験では標準偏差のおよそ 3 倍の標準模型からの偏差が測定された。より精度の高い 実験が望まれており、J-PARC E34 では、 $(g-2)_{\mu}$ を 0.1 ppm の精度で測定することを狙っている。それに 加えて、E34 ではミューオンの電気双極子モーメント も1×10⁻²¹e·cmの精度で測定出来る [2]。E34 の実験 方法は、これまでの実験とはまったく異なる。これまで の実験では、生成標的で生じたパイオンの崩壊からの ミューオンを直接用いていたため、ミューオンビームの エミッタンスは典型的には 1000π mm mrad と非常に 大きく、これが系統誤差の主な要因となっていた。それ に対して、E34 では系統誤差を改善するために低エミッ タンスミューオンビームを用いる。要求されるビーム広 がり $\Delta p_t/p$ は、 10^{-5} 以下であり、想定エミッタンスは、 1.5π mm mrad である。これを満たすために、我々はシ リカエアロジェル標的から生成される室温のミューオニ ウム (Mu: μ⁺e⁻) をレーザー乖離して生成する超低速 ミューオン [3] を用いる。 室温 (25 meV) の超低速ミュー オンは、要求される $\Delta p_t/p$ を満たすため 212 MeV まで 加速する必要がある。リニアックを用いることで、2.2 µs と寿命の短いミューオンを素早く加速出来る。Figure 1 にミューオンリニアックの現状のベースライン構成 [4] を示す。

ミューオンリニアックは、J-PARC ミューオン施設の H ライン [5] に建設予定である。超低速ミューオンは、高 周波四重極リニアック (RFQ) によってバンチングされ、 0.34 MeV まで加速される。RFQ に続いて、交差櫛形 H モードドリフトチューブリニアック (IH-DTL) [6] に

Figure 1: Configuration of the muon linac.

よって、4.5 MeV まで加速される。引き続き、ディスクア ンドワッシャー (DAW) 結合空洞型リニアック (CCL) セクションで 40 MeV まで加速され、最後に円盤装荷型 進行波加速管(DLS) [7] によって 212 MeV まで加速さ れる。RFQ は開発コストを下げるため、J-PARC リニ アック用の予備機を使用する予定であり [8]、したがっ て加速周波数は 324 MHz である。J-PARC RFQ を使 用するという制限を外し、後段の周波数である 1.3 GHz (Lバンド)に揃えられれば RF 源の種類を一種類にす ることができ合理的である。我々は、文献 [9] において、 この部分をLバンド RFQ で置き換える提案をしたが、 RFQ のヴェーン長が 3.7 m と波長の 16 倍になってしま う(単空洞の RFQ を安定動作させるには波長の 4 倍程 度が限度とされる)のと、消費電力が3 MW とかなり大 くなってしまったことから、今回はより良い効率を目指 して RFQ と結合空洞型 DTL (CCDTL) の組み合わせ から成る初段部を提案する。Table 1 に主要パラメータ を示す。

本論文ではこのミューオンリニアックLバンド低エ ネルギー部の RFQ と CCDTL それぞれの概念設計を 示す。

2. RFQ

L バンド RFQ のビーム力学設計は RFQGEN [10] を 用いて行った。Figure 2 にセルパラメータ、Table 2 に 得られた設計パラメータをまとめる。RFQ は一般に加 速効率は良くないので、バンチング終了後最低限の加速 で次段の CCDTL に繋ぐ設計とした。

Figure 3 に、RFQ を通しての粒子分布の発展を、Fig. 4

^{*} yasuhiro.kondo@j-parc.jp

Proceedings of the 17th Annual Meeting of Particle Accelerator Society of Japan September 2 - 4, 2020, Online

PASJ2020 WEPP05

Table 1: Requirements for the L-band RFQ	
Beam species	μ^+
Resonant frequency	1296 MHz
Injection energy	30 keV
Extraction energy	$4.5 { m MeV}$
Peak beam intensity	1×10^6
Trans. norm. rms emittance	$< 0.25\pi$ mm mrad
Repetition rate	25 Hz
RF pulse length	$20 \ \mu s$
RF duty factor	0.05%

Figure 2: Cell Parameters of the L-band RFQ.

Table 2: Design Parameters of the L-band RFQ Ob-
tained with RFQGEN

30 keV
$0.7 { m MeV}$
0.94 m
217
63 kV
34 MV/m
(1.06 Kilpatrick)
2.50 mm
$0.75 \ (\rho_t = 1.9 \text{ mm})$
1.58 mm
2.00
-30 deg
$0.2 \ \mathrm{MW}$

に RFQ 出口での粒子分布を示す。規格化 rms エミッ タンス 0.17π mm mrad のウォーターバッグ入射ビー ムに対して、透過率 99% であり、RFQ 出口での規格化 rms エミッタンスは、横方向 0.19π mm mrad、縦方向 0.13π MeV deg であった。この長さの RFQ でのミュー オンの崩壊損失は 4% である。

Figure 3: Phase space evolution of the L-band RFQ obtained with RFQGEN.

Figure 4: Phase space distribution at the RFQ exit.

3. CCDTL

DTL は 1946 年に Alvarez によって提唱された古典的 な加速構造であるが、今日でもなお β が 0.1 から 0.3 程 度の陽子や重陽子の加速に最善の加速器である。ミュー オンにおいてもビーム力学上はそうであるが、L バンド の構造を考える場合、ドリフトチューブ内に収束構造を 埋め込むのはほぼ不可能であろう。そこで代替として、収 束磁石を空洞外に配置できる CCDTL を検討した。我々 のミューオンリニアックでは、空間電荷力はまったく考 慮する必要が無いが、ミューオンの質量は陽子の 1/9 し かないため、RF 発散力の影響を強く受ける。このため 1 空洞内に 1 本のドリフトチューブとし、1 空洞毎に収 東磁石を挟む構成とした。収束磁石としてはコンパクト に製作出来る永久磁石を想定している。

CCDTL の空洞設計は CDTFISH [11] を用いて行っ た。Figure 5 に、 $\beta = 0.11 \ge \beta = 0.18$ までの SUPER-FISH のプロットを示す。CDTFISH で $\beta = 0.11$ から $\beta = 0.18$ まで 0.1 きざみでトランジットタイムファクタ を計算し、ビーム力学の計算に用いた。

CCDTL のビーム力学設計は、PARMILA [12] を用 いて行った。Table 3 に主なパラメータとビームシミュ レーションの結果を示す。空洞と空洞の間隔は $2\beta\lambda$ とし、 FODO ラティスを採用した。Figure 6 は PARMILA が 出力した TRACE3D 入力ファイルの表示結果で、Fig. 7 に CCDTL 出口での粒子分布を示す。ミューオン崩壊に

Proceedings of the 17th Annual Meeting of Particle Accelerator Society of Japan September 2 - 4, 2020, Online

PASJ2020 WEPP05

Figure 5: CCDTL cavities designed with SUPER-FISH. Left: $\beta = 0.11$. Right: $\beta = 0.18$.

よるロスは2%と見積もられる。

Table 3: Design Parameters of the L-band CCDTLObtained with PARMILA

Initial energy	0.7 MeV
Final energy	$4.5 \mathrm{MeV}$
E_0	$5.5 \mathrm{MV/m}$
$\phi_{s,max}$	-30 deg
Number of cells	30 (15 cavities)
Length	2.4 m
Transmission	100%
Trans. emittance growth	10%
Power dissipation	$0.4 \ \mathrm{MW}$

Figure 6: Beam envelopes of the CCDTL obtained with TRACE3D designed using PARMILA.

4. まとめ

ミューオンリニアック低エネルギー部の代替案として L バンド RFQ と CCDTL の組み合わせによるリニアッ クを提案した。324 MHz のベースライン設計が、3.2 mの RFQ と 1.4 m の IH-DTL で全長 4.6 m (マッチング セクション除く)であったところ、前回の L バンド RFQ のみの設計では全長 3.7 m (ただし出射エネルギーは 5.2 MeV)、今回の設計では RFQ 0.9 m、CCDTL 2.4 m

Figure 7: Phase distributions at the CCDTL exit with PARMILA.

の全長 3.3 m となった。空洞損失も、L バンド RFQ の みの場合の 3 MW から合計で 0.6 MW と、かなりの省 電力設計となった。ただし、324 MHz の場合の空洞損 失は 0.4 MW であり、今回の設計より少ないが、これは RFQ が周波数が高くなると電力消費が増えるためであ る。このように、L バンド RFQ と CCDTL の組み合わ せの低エネルギー部の可能性が示されたが、一方で、デ メリットとしては、横方向のアクセプタンスが小さくな る点があり、より慎重な RFQ 入射設計が求められる。 今後、入射部の再設計と、RFQ-CCDTL 間のマッチン グセクションを設計し、総合的に性能を評価していく。

謝辞

本研究は、日本学術振興会科学研究費 JP18H03707 の 助成を受けております。

参考文献

- G. W. Bennett, *et al.*, Final report of the E821 muon anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003.
- [2] T. Mibe, edit., J-PARC E34 conceptual design report, Tech. rep., KEK (2011).
- [3] G. A. Beer, Y. Fujiwara, S. Hirota, K. Ishida, M. Iwasaki, S. Kanda, H. Kawai, N. Kawamura, R. Kitamura, S. Lee, W. Lee, G. M. Marshall, T. Mibe, Y. Miyake, S. Okada, K. Olchanski, A. Olin, H. Ohnishi, Y. Oishi, M. Otani, N. Saito, K. Shimomura, P. Strasser, M. Tabata, D. Tomono, K. Ueno, E. Won, K. Yokoyama, Enhancement of muonium emission rate from silica aerogel with a laser-ablated surface, Prog. Theor. Exp. Phys. 2014 (91C01).
- [4] Y. Kondo, et al., Re-acceleration of ultra cold muon in J-PARC muon facility, in: Proceedings of IPAC2018, Vancouver, BC, Canada, 2018, p. FRXGBF1.
- [5] N. Kawamura, A. Toyoda, T. Mibe, N. Saito, M. Aoki, K. Shimomura, Y. Miyake, H line; A beamline for fundamental physics in J-PARC, JPS Conf. Proc. 2 (2014) 010112.
- [6] M. Otani, T. Mibe, M. Yoshida, K. Hasegawa, Y. Kondo, N. Hayashizaki, Y. Iwashita, Y. Iwata, R. Kitamura, N. Saito, Interdigital H-mode drift-tube linac design with alternative phase focusing for muon

PASJ2020 WEPP05

linac, Phys. Rev. Accel. Beams 19 (2016) 040101.

- Y. Kondo, K. Hasegawa, M. Otani, T. Mibe, M. Yoshida, R. Kitamura, Beam dynamics design of the muon linac high-beta section, Journal of Physics: Conference Series 874 (1) (2017) 012054; URL http://stacks.iop.org/1742-6596/874/i=1/ a=012054
- [8] Y. Kondo, K. Hasegawa, M. Otani, T. Mibe, N. Saito, R. Kitamura, Simulation study of muon acceleration using RFQ for a new muon g-2 experiment at J-PARC, in: Proceedings of IPAC2015, Richmond, VA, USA, 2015, pp. 3801–3803.
- [9] Y. Kondo, T. Morishita, M. Otani, Low power measurement of a 1300-MHz RFQ cold model, in: Proceedings of LINAC2018, Beijing, China, 2018, pp. 794–797.
- [10] Linear Accelerators, LLC, RFQGEN.
- [11] J. H. Billen, L. M. Young, Poisson Superfish, Tech. Rep. LA-UR-96-1834, Los Alamos National Laboratory (1996).
- [12] H. Takeda, Parmila, Tech. Rep. LA-UR-98-4478, Los Alamos National Laboratory.