PASJ2020 THSP02

京都大学自由電子レーザ施設の現状

PRESENT STATUS OF FREE ELECTRON LASER FACILITY AT KYOTO UNIVERSITY

全炳俊[#], 紀井俊輝, 大垣英明 Heishun Zen[#], Toshiteru Kii, Hideaki Ohgaki Institute of Advanced Energy, Kyoto University

Abstract

An oscillator-type mid-infrared Free Electron Laser (FEL) named KU-FEL has been developed at the Institute of Advanced Energy, Kyoto University for energy related researches. Recently, a THz coherent undulator radiation source driven by a compact-accelerator using a photocathode RF gun has been developed. In this paper, the present status of the facility is reported.

1. はじめに

京都大学エネルギー理工学研究所では、エネルギー 関連研究への応用を目指し、中赤外自由電子レーザ装 置(Kyoto University Free Electron Laser, KU-FEL, Fig. 1)を開発してきた[1-3]。これまでに、波長 3.4~26 µm で の発振に成功しており[3]、固体試料や薄膜のポンプ・プ ローブ分光[4-8]、生物試料への照射[9-11]等、幅広い 応用実験に供されている。

KU-FEL 装置は周波数 2856 MHz のマイクロ波で駆動する 4.5 空胴高周波電子銃と3 m 加速管、ビーム輸送部、アンジュレータ、光共振器により構成されている [1,2]。Figure 1 に 2020 年 8 月現在の FEL 装置概略図 を示す。

Figure 1: Layout of MIR-FEL and THz-CUR source in August 2020.

中赤外 FEL の開発に加えて、近年は光陰極高周波 電子銃で発生させた電子バンチをバンチ圧縮器で圧縮 し、1 ps 程度の短バンチにした後に、アンジュレータに 入射する事で強い準単色 THz 光を発生させるコヒーレ ントアンジュレータ放射(Coherent Undulator Radiation: CUR)光源の開発も行っている[12-18]。THz-CUR 光源 の概略図も Fig. 1 に示した。THz-CUR 光源は専用の 光陰極高周波電子銃を持つが、高周波源と光陰極駆動 用レーザを KU-FEL 用電子銃と共有している。2015 年 4 月に光陰極高周波電子銃からの電子ビーム発生に成 功した。その後、2016 年 3 月にバンチ圧縮器の設置を 完了、2016 年 4 月にコヒーレント遷移放射を用いたバ ンチ圧縮条件の確認を行った。そして、2016 年 7 月に アンジュレータの設置を完了し、2016 年 8 月にコヒーレ ントアンジュレータ放射の発生を確認した。最近は ECC-RF Gun[19]を用いた高強度化や低減衰偏光可変性付 与光学系の開発[20]などを外部利用者との共同研究で 進めている。

2. 京都大学中赤外自由電子レーザの性能

KU-FEL の 2020 年 8 月現在の性能を Table 1 に示 す。最短波長 3.4 μ m、最長波長 26 μ m での発振が確 認されている。ユーザー利用ステーションにおける各波 長でのマクロパルスエネルギーを Fig. 2 に示す。近年、 3.0~3.3 μ m と発振可能再短波長よりも短い波長を利用 したいという内部ユーザーの希望があり、中赤外用非線 形結晶(ZnGeP₂, θ =48.8 deg. ϕ =0 deg., 3 Photon 社製)を 用いた二次高調波発生も行っている[21]。

2019 年度には FEL の引き出し効率測定を行い、波 長 11.6 µm にて最大 5.5%の引き出し効率が得られてい る事を確認した。これは常伝導加速器を用いた共振器 型 FEL では最高の引き出し効率であり、動的バンチ位 相変調を導入することで、高い引き出し効率が得られて いることが明らかとなっている[22]。

2020 年 8 月現在、本装置は波長可変範囲および ユーザーステーションで利用可能な最大マクロパルスエ ネルギーにおいて、中赤外自由電子レーザとして国内 最高性能を有すると共に、引き出し効率において現在稼 働中の共振器型 FEL として世界最高性能を有する。

Table 1: Performance of KU-FEL

Wavelength Range	$3.4-26\ \mu m$
Max. Macro-pulse Energy*	41.8 mJ @4.9 μm
Typ. Macro-pulse Duration	2 μs
Max. Micro-pulse Energy*	7.3 μJ @4.9 μm
Micro-pulse Duration [23]	0.6 ps @12 μm
Typ. Bandwidth	3%-FWHM
Max. Extraction Efficiency [22]	5.5% @11.6 µm

*Observed at user station 1 (after 12 m transport).

[#] zen@iae.kyoto-u.ac.jp

PASJ2020 THSP02

Figure 2: Macro-pulse energy of KU-FEL, which is available at the user station 1.

3. KU-FEL 稼働状況

Figure 3 に KU-FEL 駆動用電子線形加速器の 2019 年度における稼働状況を示す。総運転時間は 539 時間 であった。放射線管理上の年間最大運転可能時間(960 時間)の約 56%であり、まだマシンタイムに余裕がある。 2019 年度はユーザーの希望があったため、夏季シャット ダウンを設けず、8 月、9 月にも装置の運転を行った。

Figure 3: Operation time of KU-FEL facility in FY2019. The adjustment of accelerator, machine tuning for FEL lasing, study of the driver linac and FEL parameter measurements are included in "Others".

Figure 4: History of total operation time and user experiment time of KU-FEL since 2009. The maximum operation time per year is 960 hours, which is limited by radiation restriction.

Figure 4 に 2009 年度以降の総運転時間とユーザー 利用時間及びユーザー利用時間が総運転時間に占め る割合の履歴を示す。2010 年度までは加速器の R&D がメインであったが、2011 年度から 2013 年度にかけて ユーザー利用実験が増加した。2019 年度には、総運転 時間の約 78%がユーザー利用実験に供された。

2020 年度は所外共同利用・共同研究の件数が 2019 年度の 15 件(海外 1 件含む)から 16 件(海外 2 件含む) に微増しており、ユーザー利用時間の更なる増加を見込 んでいた。しかし、新型コロナウィルス感染症の拡大を受 けて緊急事態宣言が発令された 4 月・5 月の外部利用 はほぼキャンセルとなった。6 月からは外部利用を再開 している。秋からの感染再拡大を見越し、10 月末までに 全ての外部ユーザー利用を一通り実施するため、外部 ユーザーマシンタイムを 6~10 月の間にアサインして鋭 意共同利用実験を実施中である。本年度に入ってから の総運転時間は 8 月末時点で約 190 時間である。コロ ナ禍の影響もあり、昨年度の 8 月末時点の総運転時間 約 210 時間よりも 1 割程度少ない状況となっている。

4. トラブルおよび問題点

4.1 高周波窓の真空漏れ

2013~2019 年度の年会でも報告したが、進行波型加速管の上流側の RF 窓から加圧時に SF6 ガスが RF 窓を通って真空側に漏れるという問題が発生していた。加速器室の室温と加速管部の真空度が強い相関を示しており、夏季に真空度が悪化する。2019年10月に高周波窓の交換を実施し、問題は解決した。また、取り外した RF 窓はメーカーにて検査後、真空シール材を交換・修理し、予備品として使用可能な状況とした。

4.2 導波管内での放電

進行波加速管へ高周波電力を供給する導波管内での放電が2019年11月に顕在化し、運転に支障をきたす様になった。放電箇所特定のため、市販のセキュリティ向け高性能集音マイク(LPS-TM101)を2つ用意し、導波管に貼り付け、放電発生時のマイクの信号時間差を利用して、放電箇所がH-Bend導波管であると特定した。 H-Bend導波管を取り外すと、Fig. 5の様に導波管端面に黒い放電痕があった。導波管端面で放電していた様である。放電箇所を研磨し、ガスケットを交換して元に戻したところ、放電が収まった。

Figure 5: Photograph of the damage on the waveguide due to RF induced breakdown.

PASJ2020 THSP02

4.3 クライストロンモジュレータの老朽化

KU-FEL では 2 台のクライストロンを用いて、電子銃と 進行波加速管を個別に駆動している。電子銃用モジュ レータは 1997 年購入、加速管用モジュレータは 2003 年購入であり、どちらも 15 年以上継続して使用しており、 老朽化問題が顕在化している。

電子銃用モジュレータは PFN 用高圧コンデンサの不 良が 2014 年度より発生し、20 本の全交換を 2017 年度 に完了していた[24]。2019 年度は加速管用モジュレータ の PFN 用高圧コンデンサの不良が発生した。そこで、 2019 年度はまず新しいコンデンサを 10 本調達し、交換 した。残りの 10 本は不良の発生状況を見ながら、調達・ 交換を行っていく予定である。

モジュレータの放電スイッチとして用いられているサイ ラトロンの経年劣化も進んでおり、これまで既報のとおり、 電子銃用モジュレータの放電時のノイズが増加すると共 に、パルス毎のノイズの強度が不安定になるという現象 が生じている。そして、このノイズ増加が原因と考えられ る PFN 高圧充電電源の制御ボードの異常・故障が発生 する様になっている[21]。そこで、2020年4月に10年 以上前に購入した予備のサイラトロンに交換した。使える かどうか半信半疑であったが、無事に動作したため、現 在、交換したサイラトロンで運転を実施しながら様子を見 ている。一方、2020年7月から加速管用モジュレータに おいてサイラトロンの点弧不良が発生する様になった。 初期の点弧不良はリザーバ電圧・ヒーター電圧を調整す ることで解消した。その後も点弧不良が生じるたびにリ ザーバー電圧を上げる必要が生じている。現在、メー カー推奨最大電圧を超える条件で使用する状況となっ ており、寿命が近いと考えられる。このトラブルへの対応 として、2020 年度夏に KEK より使用済みサイラトロンを 譲り受け、交換に向けた検討を行っている。

他方、根本的な老朽化対策として、上記クライストロン モジュレータ2台の更新を考えており、大学本部への予 算要求を行っている。

5. 施設整備状況

更により多くのユーザーに利用して頂ける様、加速器 及び利用環境の整備を引き続き行っている。以下に案 件毎に整理して述べる。

5.1 光陰極高周波電子銃を用いた THz 光源開発

2009 年度に KEK の大学等連携支援事業の下、1.6 空胴高周波電子銃(改良型 BNL Type Gun-IV)を製作し たのに端を発し、これまで、継続して光陰極高周波電子 銃を用いた THz コヒーレントアンジュレータ放射(THz-CUR)の開発を継続して行ってきた[12-18]。2019 年度は 既設の 1.6 空胴高周波電子銃を東京大学の坂上氏が 開発した ECC-RF Gun[19]と交換し、THz 発生実験を 行った。電子ビームエネルギーが低下しているにも関わ らず、より高周波な THz 波の発生を確認した。また、東 北大学の柏木氏との共同研究で、偏光可変技術の開発 も行っており、強度の減衰がほとんどないワイヤーグリッ ド偏光子を使った光学系を用いて、左右円偏光の容易 なスイッチングに成功している[20]。

5.2 光陰極運転による KU-FEL の高ピークパワー化

2018 年度から光・量子飛躍フラグシッププログラム(Q-LEAP)、基礎基盤研究課題として、中赤外自由電子 レーザ(FEL)で駆動する高繰り返し高次高調波発生 (HHG)アト秒光源(FEL-HHG)の実現を目指し、量研、日 大、KEK、京大エネ研のチームで研究開発を開始した。 本プロジェクトでは、共振器型中赤外自由電子レーザで 発生させた高強度数サイクル中赤外光を希ガスに集光 し、HHG を行い、アト秒 X 線発生を行う予定である。研 究プロジェクトの構想や概要については、プロジェクト リーダーである量研の羽島氏が昨年度の加速器学会で 報告しているので、そちらを参照されたい[25]。KU-FEL では、既設の KU-FEL 施設をアップグレードする事で HHG 駆動に必要な高強度数サイクル中赤外光の発生 を目指して研究を進めている。2018 年度には光陰極運 転用陰極励起用レーザシステムのアップグレードを行っ た[26]。2019 年度は中赤外 FEL のパルス長測定系の 構築を進めると共に、アップグレードした光陰極励起用 レーザシステムを用いた実験を行い、バンチ電荷量 190 pC、マクロパルス長7 µs の電子ビームを発生させ、FEL 発振を行うことで、引き出し効率 9.4%という共振器型 FEL の引き出し効率として、世界最高記録を達成した。 また、新光陰極高周波電子銃の導入も考えており、より 高いバンチ電荷の電子ビームを供給する事で、更に高 い FEL ピークパワーの達成も計画している。

6. まとめ

京都大学中赤外自由電子レーザは現在、当初の目標 波長領域(5~20 µm)を超える 3.4~26 µm での発振が可 能となっている。内部ユーザーの 3.0~3.3 µm を利用し たいという需要を満たすため、中赤外用非線形結晶 (ZnGeP₂)を用いた二次高調波発生も開始し、波長 3.15 µm でマクロパルスエネルギー約 1 mJ を達成可能であ る事が確認されている。

2019 年度の総稼働時間は 539 時間でその内の約 78%がユーザー利用実験に供された。クライストロンモ ジュレータの老朽化が深刻化し、安定なユーザー利用 に支障が出始めている。

一方、光陰極励起用レーザの整備が進み、光陰極高 周波電子銃を用いた THz 光源開発や中赤外 FEL の性 能向上などの開発が進められている。今後、これらの開 発が進むことで、より幅広い応用実験に利用可能な施設 となる事が期待される。

参考文献

- H. Zen *et al.*, "Development of IR-FEL Facility for Energy Science in Kyoto University", Infrared Physics & Technology, 51, 2008, pp. 382-385; https://www.sciencedirect.com/science/article/pii/S13504 49507001077
- H. Zen *et al.*, "Present Status and Perspectives of Long Wavelength Free Electron Lasers at Kyoto University", Physics Procedia, 84, 2016, pp. 47-53; https://www.sciencedirect.com/science/article/pii/S18753 89216303042
- [3] H. Zen *et al.*, "Present Status of Infrared FEL Facility at Kyoto University", Proceedings of FEL2017, 2018, pp. 162-165;

http://accelconf.web.cern.ch/AccelConf/fel2017/papers/m op050.pdf

- [4] K. Yoshida *et al.*, "Experimental Demonstration of Mode-Selective Phonon Excitation of 6H-SiC by a Mid-Infrared Free Electron Laser with Anti-Stokes Raman Scattering Spectroscopy", Applied Physics Letters, 103, 2013, 182103; https://aip.scitation.org/doi/10.1063/1.4827253
- [5] E. Ageev *et al.*, "Time-resolved detection of structural change in polyethylene films using mid-infrared laser pulses", Applied Physics Letters, 107, 2015, 041904; https://aip.scitation.org/doi/full/10.1063/1.4927666
- [6] M. Kagaya *et al.*, "Mode-Selective Phonon Excitation in Gallium Nitride Using Mid-Infrared Free Electron Laser", Japanese Journal of Applied Physics, 56, 2017, 022701; http://iopscience.iop.org/article/10.7567/JJAP.56.022701/ meta
- [7] M. Kitaura *et al.*, "Visualizing Hidden Electron Trap Levels in Gd₃Al₂Ga₃O₁₂:Ce Crystals Using a Mid-Infrared Free Electron Laser", Applied Physics Letters, 112, 2018, 031112;

https://aip.scitation.org/doi/full/10.1063/1.5008632

- [8] O. Sato *et al.*, "Two-photon Selective Excitation of Phonon-mode in Diamond Using Mid-Infrared Free-Electron Laser," Physics Letters A 384, 2020, 126223; https://www.sciencedirect.com/science/article/pii/S03759 6011931165X
- [9] F. Shishikura *et al.*, "ザリガニの眼は中赤外線が見えるの か", 日大医誌, 75, 2016, pp. 140-141; https://www.jstage.jst.go.jp/article/numa/75/3/75_140/_a rticle/-char/ja/
- [10] T. Kawasaki *et al.*, "Photo-Modification of Melanin by a Mid-Infrared Free-Electron Laser," Photochemictry and Photobiology, 95, 2019, pp.946-950; https://onlinelibrary.wiley.com/doi/full/10.1111/php.1307 9
- [11] T. Kawasaki *et al.*, "Cellulose Degradation by Infrared Free Electron Laser," Energy & Fuels 34, 2020, pp.9064-9068; https://pubs.acs.org/doi/10.1021/acs.energyfuels.0c0106
- 9
 [12] S. Suphakul *et al.*, "Generation of Short Bunch Electron Beam from Compact Accelerator for Terahertz Radiation," Proceedings of IPAC2016, 2016, pp.1757-1759; http://accelconf.web.cern.ch/AccelConf/ipac2016/papers/t upow008.pdf
- [13] S. Suphakul *et al.*, "Beam Dynamics Investigation for the Compact Seeded THz-FEL Amplifier," Energy Procedia, 89, 2016, pp.373-381; http://www.sciencedirect.com/science/article/pii/S187661 0216300571
- [14] S. Suphakul *et al.*, "Measurement of Coherent Undulator Radiation of Compact Terahertz Radiation Source at Kyoto University," International Journal of Magnetics and Electromagnetism 3, 2017, IJME-3-008; https://www.vibgyorpublishers.org/content/internationaljournal-of-magnetics-and-electromagnetism/ijme-3-008.pdf
- [15] S. Krainara *et al.*, "Development of Compact THz Coherent Undulator Radiation Source at Kyoto University", Proceedings of FEL2017, 2018, pp. 158-161; http://accelconf.web.cern.ch/AccelConf/fel2017/papers/m op049.pdf

- [16] S. Krainara *et al.*, "Manipulation of Laser Distribution to Mitigate the Space-Charge Effect for Improving the Performance of a THz Coherent Undulator Radiation Source", Particles 1, 2018, pp.238-252; https://www.mdpi.com/2571-712X/1/1/18
- [17] S. Suphakul *et al.*, "Investigation of Bunch Compressor and Compressed Electron Beam Characteristics by Coherent Transition Radiation," Particles 2, 2019, pp.32-43; https://www.mdpi.com/2571-712X/1/1/18
- [18] S. Krainara et al., "Properties of THz Coherent Undulator Radiation Generated from a Compact Accelerator Source at Kyoto University," Review of Scientific Instruments 90, 2019, 103307;

https://aip.scitation.org/doi/10.1063/1.5110342

- [19] K. Sakaue *et al.*, "Ultrashort Electron Bunch Generation by an Energy Chirping Cell Attached RF Gun," Physical Review ST Accelerators and Beams 17, 2014, 023401; https://journals.aps.org/prab/abstract/10.1103/PhysRevST AB.17.023401
- [20] S. Kashiwagi *et al.*, "Demonstration of Variable Polarized Coherent Terahertz Source," Infrared Physics & Technology 106, 103274 (2020); https://www.sciencedirect.com/science/article/pii/S13504 49519310254
 [21] H. Zen *et al.*, "Present Status of Free Electron Laser
- [21] H. Zen *et al.*, "Present Status of Free Electron Laser Facility at Kyoto University," Proceedings of the 16th Annual Meeting of Particle Accelerator Society of Japan, Kyoto Japan, Jul. 31-Aug. 3, 2019; https://www.pasj.jp/web_publish/pasj2019/proceedings/P DF/FSPI/FSPI004.pdf
- [22] H. Zen et al., "High Extraction Efficiency Operation of a Midinfrared Free Electron Laser Enabled by Dynamic Cavity Desynchronization," Physical Review Accelerators and Beams, 23, 2020, 070701; https://journals.aps.org/prab/abstract/10.1103/PhysRevA ccelBeams.23.070701
- [23] Y. Qin et al., "Pulse Duration and Wavelength Stability Measurements of a Midinfrared Free Electron Laser," Optics Letters, Vol. 38, 2013, pp. 1068-1070; https://www.osapublishing.org/ol/abstract.cfm?uri=ol-38-7-1068
- [24] H. Zen *et al.*, "Present Status of Free Electron Laser Facility at Kyoto University", Proceedings of 14th Annual Meeting of Particle Accelerator Society of Japan, 2017, pp. 1347-1350;

https://www.pasj.jp/web_publish/pasj2017/proceedings/P DF/FSP0/FSP011.pdf

- [25] R. Hajima et al., "自由電子レーザーで駆動する高繰り返 しアト秒 X 線光源", Proceedings of the 16th Annual Meeting of Particle Accelerator Society of Japan, Kyoto, Japan, Jul. 31-Aug. 3, 2019, pp. 742-746; https://www.pasj.jp/web_publish/pasj2019/proceedings/P DF/THPI/THPI011.pdf
- [26] H. Zen et al., "京都大学中赤外自由電子レーザの長マクロ パルス光陰極運転に向けた光陰極励起用レーザシステム のアップグレード", Proceedings of the 16th Annual Meeting of Particle Accelerator Society of Japan, Kyoto, Japan, Jul. 31-Aug. 3, 2019, pp. 786-788; https://www.pasj.jp/web_publish/pasj2019/proceedings/P DF/THPI/THPI024.pdf