PASJ2020 THPP49

Cs-K-Sb のヘテロ接合による GaAs フォトカソードの NEA 活性化 NEA ACTIVATION OF GAAS PHOTOCATHODE BY CS-K-SB HETEROJUNCTION

小杉直^{#, A)},郭磊^{B)},高嶋圭史^{B)},真野篤志^{B)},保坂将人^{B)},加藤政博^{B,C,D)}

Naoki Kosugi ^{#, A)}, Lei Guo^{B)}, Yoshifumi Takashima^{B)}, Atsushi Mano^{B)}, Masahito Hosaka^{B)}, Masahiro Kato^{C)}

^{A)} Graduate School of Engineering, Nagoya University

^{B)} Synchrotron Radiation Research Center, Nagoya University

^{C)} HiSOR, Hiroshima University, ^{D)} UVSOR, Institute for Molecular Science

Abstract

NEA-GaAs photocathode is of interest because it has low emittance, high quantum efficiency and electronic excitation in the infrared region. However, NEA surface generated by Cs-O/F deposition has problems such as high operation vacuum and short lifetime. In this study, we deposited CsK_2Sb semi-conductor thin film on GaAs surface and obtained a result which suggest NEA surface on GaAs wafer. We also found that optimal CsK_2Sb thin film thickness as NEA surface. This finding suggests a new technique alternative to the NEA activation with Cs-O/F for getting a sturdy NEA surface.

1. はじめに

フォトカソードは低エミッタンス、大電流、短パ ルスといった通常の熱力ソードでは実現が難しい特 性を持つ電子ビームを生成することが可能である。 そのため、走査型電子顕微鏡や透過型電子顕微鏡な どの科学研究施設で用いられている汎用装置から、 先端加速器に至るまで電子源としての利用が考えら れる。NEA(Negative Electron Affinity)-GaAs フォトカ ソードは、物質のバンド構造による光励起の選択性 を利用した偏極電子ビーム生成、NEA という特殊な 表面状態に由来する極低エミッタンスビームの生成、 高い量子効率など、多くの特長を有しており、 LCLS-II 加速器施設[1]をはじめ、スピン偏極透過電 子顕微鏡[2]まで多くの応用先から注目されている。 NEA とは負の電子親和性を持つ表面であり、真空エ ネルギー準位が物質中の伝導帯の最低準位よりも低 い表面状態である。通常 NEA 表面は清浄な p 型 GaAs 半導体表面に Cs と酸素を蒸着させることによ り生成される。しかし GaAs 表面に蒸着させる Cs-O 層が残留ガスの吸着[3]や、イオン化された残留ガス の逆流[4]、Csと酸素の熱脱離[5]により直ちに劣化 してしまい、寿命が短いことが課題となっている。

そこで脆弱な Cs-O 層の代わりに GaAs 表面に Cs-K-Sb 薄膜を生成し、強靭な NEA 表面の生成を試み た。Cs-K-Sb は 2 種類以上のアルカリ金属を用いた マルチアルカリフォトカソードの一種として研究が なされている。マルチアルカリフォトカソードは、 耐久性が高く、波長が 500 nm 帯の緑色光で電子発生 が可能で、QE が 10%程度と高いとされるのが特長 のフォトカソードである。かつ、60 mA という大電 流を引き出すことができ、Cs-O型 NEA GaAs と比較 して 2 桁程度高い 10⁻⁷ Pa という高真空(10⁻⁶ Pa)と超高 真空の境界あたりの汎用的な動作圧力においても安 定した電子放出が可能である[6]。また p 型 GaAs と CsK₂Sb のバンド構造に着目すると、Fig. 1 のように

Figure 1: NEA surface energy-band model for heterojunction between p-GaAs and CsK₂Sb. E_c is the conduction band, E_v is the valence band, E_g is the bandgap, E_{vac} is vacuum level and E_f is the fermi level.

CsK₂Sb の仕事関数(q)[7]が GaAs のバンドギャップ (Eg)より低くなるため、NEA 表面を得ることができ ると考えられる。さらに Cs-O 型 NEA-GaAs フォト カソードではCs-O層がポテンシャル障壁となり、電 子がトンネル効果により障壁を透過する確率を考慮 する必要があるが、CsK2Sb と GaAs のヘテロ接合 f ではこのようなポテンシャル障壁は存在しないと考 えられる。もし負の電子親和力が得られれば、10-7 Pa において、10%という高いピーク量子効率と 10 mA 以上の引き出し電流が得られる高性能フォトカ ソードが期待できる。これによって、これまでの Cs-O 型 NEA-GaAs フォトカソードでは 10⁻⁹ Pa とい う極高真空下でしか動作しなかったために限られて いた応用先を、次世代電子顕微鏡や次世代加速器用 の高性能電子源に広げられる可能性が出てくる。本 研究では CsK₂Sb 膜厚を変化させた際の量子効率を 計測し、NEA 表面の確認、適切な膜厚の検討、寿命 の評価を行った。

[#] kosugi.naoki@k.mbox.nagoya-u.ac.jp

2. 蒸着装置

本研究で使用した蒸着装置はイオンポンプと NEG を 用い、ベース圧は 9.0×10⁹ Pa 程度に到達している。装 置の内部配置を Fig. 2 に示す。基板上に各元素を蒸着 させ、レーザー入射による光電効果で生じる電流の計測 よって量子効率を求めることが可能である。GaAs バンド ギャップ付近の光電流値を測定するため、1 MΩの抵抗 と 0.1 uF コンデンサを並列し、光電流値分解能は 0.01 nA を持っている。

蒸着膜厚の測定のため、蒸着源を90°方向に設置し、 一方は GaAs 基板へ、もう一方は水晶振動子型の膜厚 計に向けて蒸気を発生させている。また基板の加熱洗浄 と蒸着中の温度管理のため、熱電対と放射温度計を並 行でカソード裏と表面の温度を測定し、カソード裏側に 設置されたヒーターにより温度の調節が可能である。

Figure 3 に示すように CsK₂Sb のレーザー透過率が波 長によって大きく変化する。そのため CsK₂Sb の結晶性 を評価する場合は、CsK₂Sb 層での吸収率が高い 532 nm の半導体レーザーを使用している。NEA の確認する 場合は、CsK₂Sb の透過率が高く GaAs からの電子励起 を確認できる 700-900 nm のチタンサファイヤレーザーを

Figure 2: A schematic drawing of deposition system.

Figure 3: Laser transmittance of CsK₂Sb, with yellow line, blue line, orange line and gray line for of 15 nm, 25 nm, 37.5 nm, 50 nm CsK₂Sb thickness, respectively.

使用している。レーザーの出力が随時変化するため QE の測定毎にレーザーパワーの測定も行っている。

3. NEA 活性化

3.1 蒸着方法

理論上期待されるバンド構造を有する CsK₂Sb 薄膜の作製が必要不可欠である。実証された最適な蒸着 条件[8]を採用し、CsK₂Sb 薄膜を作成する。

最初に GaAs 基板上の酸化物を取り除くため基板の 加熱洗浄を行う。洗浄は 500℃で1時間とし、洗浄後は 約 100℃程度まで冷却し、維持する。蒸着中に温度は変 えない。我々は生み出した蒸着手順を以下に示す。

1. 目標の膜厚の Sb を蒸着する。

2. QE が一定となるまで K の蒸着を行う。

3. QE が一定となるまで Cs の蒸着を行う。

2 及び 3 では 532 nm レーザーを用いて測定する。 蒸着 後にチタンサファイヤレーザーを用いて 700~900 nm の QE の測定を行う。

Figure 4 に Sb 膜厚を 5 nm とした場合の K 蒸着後と Cs 蒸着後の 532 nm レーザーでの QE を示す。 最終的 に CsK₂Sb の QE は K 蒸着後の QE に大きく影響される ことが分かる。 そのため K、Cs 蒸着中に QE の飽和を基 準に取ることは適切な蒸着条件である。

Figure 4: Relationship between QE after K deposition and QE after Cs deposition at 532 nm laser.

3.2 CsK₂Sb 膜厚依存性

NEA に役立つ最適な CsK₂Sb 膜厚を調べるため、Sb 膜厚を 3、5、7.5、10 nm として各 Sb 膜厚に対し、3~6 回 蒸着を繰り返し行った。我々は採用した蒸着方法で生成 された CsK₂Sb 膜厚は Sb 膜厚の 5 倍程度になることが 知られている[9]ので、CsK₂Sb 膜厚はそれぞれ 15 nm、 25 nm、37.5 nm と 50 nm と考えられた。各膜厚での 532 nm と 860 nm のレーザーを使用した場合の QE を Fig. 5 に示す。どちらの波長(532nm と 860 nm)でも最も良い QE を記録した Sb 膜厚 5 nm では、GaAs のバンドギャップ 1.43 eV に相当する波長 860 nm の QE は最大 2.4×10⁻³%であった。Sb 膜厚 3 nm ではどちらの波長でも QE が

PASJ2020 THPP49

低くなった。これは Sb 膜厚が薄くなると、うまく結晶化が できないため、K、Csを蒸着しても結晶性が低い CsK₂Sb しか生成しないためだと考えられる[10]。一方 Sb 膜厚 7.5、 10 nm では 532 nm のレーザーでは比較的良好な QE を 示しているのに対し、860 nm の QE は低く、全く光電流 が見られない場合もあった。これは GaAs 内で励起電子 がドリフト中に価電子帯の正孔と再結合し、CsK₂Sb 表面 に達することができないためだと考えられる。ヘテロ接合 による NEA-GaAs 内部の電子の動きをモデル化し詳細 な検討を行う予定である。

同じ膜厚を見ると、532 nm での QE の上昇とともに、 860 nm の QE も上昇傾向がみられた。 CsK_2Sb の結晶化 がよくなると、 CsK_2Sb は理論的なバンド構造(Fig. 1)に近 づくことを示唆している。また同じ Sb 膜厚条件で蒸着を 行っても最高 QE に対して 532 nm では 2 分の 1 程度、 860 nm では 10 分の 1 程度の QE しか得られないことも あり、安定して作製することは困難なことが分かった。こ れは蒸着条件、基板状態などにより CsK₂Sb の QE の再 現性が悪い特徴と一致している。

Sbの膜厚を5 nmとして蒸着した際のQEをFig.6に 示す。複数回蒸着を行ったが、どの試料でもGaAsバン

Figure 5: Relationship between QE at 532nm and QE at 860 nm, with yellow circles, blue circles, orange circles and gray circles for of 15 nm, 25 nm, 37.5 nm, 50 nm CsK_2Sb thickness, respectively.

Figure 6: QE spectrum of 5 nm Sb thickness.

ドギャップである 1.43 eV 付近で QE が立ち上がることが 確認できた。ヘテロ接合による NEA 生成の可能性を示 したが、Cs-O 型の NEA-GaAs と比べ、まだ一桁程度の 差がある。

3.3 ダーク寿命

Sb 膜厚 5nm とし蒸着を行い、QE の測定時のみレー ザー照射を行ったダーク寿命を Fig.7 に示す。今回は一 週間程度を測定し、532 nm、860 nm 共に QE の劣化 はほとんど確認されず、非常に長い寿命を持つことが期 待される。

Figure 7: QE time degradation.

4. まとめ・今後

NEA GaAs フォトカソードの耐久性向上のため、本研 究ではヘテロ接合モデルをもとに、CsK₂Sb 薄膜による GaAs の NEA 活性化を試みた。実験の結果、GaAs のバ ンドギャップ付近で QE が立ち上がることが確認され、 NEA 表面を持つことが示唆される結果を得ることができ た。また Sb 膜厚を変化させ蒸着を行い、NEA を得られ る最適な Sb 膜厚は 5 nm(CsK₂Sb 膜厚は 25 nm)である ことは分かった。今後は、UPS を用いて表面の仕事関数 の評価を行い、具体的なバンド構造の確認を行っていく。 また GaAs のバンドギャップ付近での QE 向上のため、蒸 着方法の変更も検討する方針である。

参考文献

- [1] "Linac Coherent Light Source II (LCLS-II) Conceptual Design Report", (2011).
- [2] M. Kuwahara, Materia Japan, 58, 5, P269-274 (2019).
- [3] D. Durek *et al.*, Appl.Surf.Sci. **143**, 319, (1999).
- [4] M. Kuriki et al., Proc. PAC2013, MOPEI014 (2013).
- [5] M. Kuriki *et al.*, Nucl. Inst. Meth. Phys. Res. A 637, S87-S90 (2011).
- [6] B. Dunham et al., Appl. Phys. Let, 102, 034105 (2013).
- [7] C. Ghosh and B. P. Varma, J. Appl. Phys. 49, 8 (1978).
- [8] L. Guo, M. Kuriki, A. Yokota, M. Urano, and K. Negishi, Prog. Theor. Exp. Phys. 2017, 033G01 (2017).
- [9] S. Schubert et al., Proc. IPAC2015, WEPWA032 (2015).
- [10] M. Ruiz-Oses et al., APL Mater. 2, 121101 (2014).