PASJ2020 THPP43

パルスパワー電源への応用に向けた SiC MOSFET の特性評価 THE CHARACTERIZATION OF SIC MOSFET FOR APPLICATION TO PULSED POWER SUPPLIES

生駒直弥*,中田恭輔,虫邉陽一,徳地明

Naoya Ikoma*, Kyosuke Nakata, Yoichi Mushibe, Akira Tokuchi Pulsed Power Japan Laboratory

Abstract

In conventional pulsed power supplies for particle accelerators, discharge tubes have been used as high-voltage, highcurrent switching devices. Recently, a semiconductor switch, especially for a SiC MOSFET, is expected as an alternative switching device, due to its attractive characteristics, such as the higher breakdown field strength and the low power loss. A semiconductor pulse power supply consists of many semiconductor switches connected in series and parallel. To reduce the cost and the size of a power supply, it is required that reduce the number of semiconductor switches. Therefore, an evaluation of a turn-on time and an on-resistance, which determine the power loss at the semiconductor device, is required to investigate the feasibility of the low-cost and small power supply. In this report, we characterized five SiC MOSFETs.

1. はじめに

粒子加速器では、キッカー電磁石電源、クライス トロンモジュレータ等、様々な機器でパルスパワー 電源が使用されている.そのような電源では高電圧, 大電流、高速ターンオンという厳しい条件が要求さ れるため、保守性や寿命の観点から多くの欠点があ るものの. スイッチングデバイスとしては従来より サイラトロン等の放電管が用いられてきた.一方で, 近年では半導体デバイスの開発が進み,特に高耐圧, 低損失という優れた特徴を有するシリコンカーバイ ド(SiC)を用いた MOSFET についても、パワーエ レクトロニクス分野を中心に普及が進み,様々な製 品が入手可能となっている.このような状況のもと, 当社では SiC MOSFET を用いた加速器用半導体パル スパワー電源の開発に取り組んでいる [1]. ここで, 放電管の定格電圧,電流はそれぞれ数 10kV,数 kA であるのに対し, SiC MOSFET の定格電圧は最大で も 1.7kV, 電流も 100A 程度である. このため, 半導 体パルスパワー電源では、半導体スイッチを複数直 列, 並列に接続し, 高電圧, 大電流に対応したスイッ チを構成する手法がとられる.したがって,電源の 小型化、低コスト化の観点からは、並列数を如何に 削減するかが1つのポイントとなり, 並列数を削減 するには、実際の使用条件を想定したパルス大電流 に対する, SiC MOSFET の特性を評価する必要があ る. 中でも, 電源の出力波形の立上りや, 電源での 損失(発熱)を決める要因となるターンオン時間と オン抵抗の評価が、特に重要となる. そこで、この 度 5 種類の SiC MOSFET に対し、ターンオン時間、 及びオン抵抗の,ドレイン電流依存性を評価したの で報告する.

2. 評価した SIC MOSFET

本研究では,表1に示す5種類のSiC MOSFETの 特性を評価した.ここで,製品Dは定格電圧1,700V, それ以外は 1,200V の製品である.また,製品 E はケ ルビン端子(またはゲートソース端子)付きの 4 pin モデル,そ例外は通常の 3 pin モデルである.ケル ビン端子付きモデルでは,主回路の(すなわち大電 流が流れる)ソース端子と,ゲート回路のソース端 子が分かれており,主回路のインダクタンスによる ゲート電圧の変動を受けにくく,速い立上り速度が 得られるようになっている.

3. 実験方法

実験は、図1に示す回路を用いて行った.まず、 充電抵抗、及びインダクタを通して、コンデンサを 800V(耐圧 1,700Vの製品 Dに対しては 1,160V)で 充電する.次に、パルス幅 1.5 μ sのトリガを入力し、 負荷抵抗に放電させる.なお、ゲート波形は、図 2 に示す +20/-3Vの矩形波である.この時のドレイン-ソース電圧 V_{DS} 、ドレイン電流 I_D の波形を、それぞ れ高電圧差動プローブ(横河計測、701926)、および ロゴスキーコイル(岩崎通信機、SS-284A)で測定す る.同様の実験を、負荷抵抗を 10 Ω ~短絡まで変化 させて行い、ドレイン電流に対するターンオン時間 とオン抵抗を評価した.

Figure 1: The electrical circuit for the characterization of SiC MOSFETs.

^{*} ikoma@myppj.com

Proceedings of the 17th Annual Meeting of Particle Accelerator Society of Japan September 2 - 4, 2020, Online

PASJ2020 THPP43

Product	А	В	С	D	Е
V_{DS} [V]	1,200	1,200	1,200	1,700	1,200
$R_{ON} [\mathrm{m}\Omega]$	80	40	30	45	12
V_{GS} [V]	+22 / -6	+22 / -4	+22 / -4	+20 / -5	+20 / -10
$V_{GS,pulse}$ [V]	+26 / -10	+26 / -4	+26 / -4	+25 / -10	-
I_D [A]	40	55	72	72	100
$I_{D,pulse}$ [A]	80	137	180	160	200
P_D [W]	262	262	339	520	-
Rise time [ns]	33	39	42	20	22
Fall time [ns]	28	24	29	18	35

Table 1: The List of SiC MOSFETs Tested in this Study

4. 実験結果

実験結果のうち、代表として製品 C の V_{DS} , I_D の 波形を、図 3 に示す. 負荷抵抗を小さくして I_D が 増えるとともに、 V_{DS} の立下り、 I_D の立上りは共に 遅くなっていることが分かる.また、 I_D が大きくな ると、オン抵抗が増加し、ターンオンしても V_{DS} は 0V まで下がらなくなる.

5. ターンオン時間,オン抵抗の評価

図3に示した波形から、以下のような定義のもと、 ターンオン時間とオン抵抗を求めた.まず、ターン オン時間は、 V_{DS} が90%-10%まで下がる時間とし た.但し、負荷短絡時のように V_{DS} が10%まで下が らない場合は、ターンオン時間を定義できない.そ して、オン抵抗は、 V_{DS}/I_D よりオン抵抗を求め、そ のうち1.3 μ s時点での値を代表値とした.

各 SiC MOSFET について, *I_D*のピーク値に対する ターンオン時間とオン抵抗の変化を図4に示す.製 品 A~D は,いずれもドレイン電流の増加とともに, ターンオン時間,オン抵抗が増加していることが分 かる.これは,この領域では MOSFET での損失が増 加することを意味している.製品 D に関しては,~ 250A までであれば,ターンオンが 100ns 未満かつ, オン抵抗の増加がほとんどない領域で使用できる. 製品 E では,ターンオン時間,オン抵抗の顕著な増 加は見られなかった.以上より,パルス大電流用途 では,製品 D, E が適していることが分かった.

6. 結論

本稿では,加速器におけるパルスパワー電源の半 導体化を目指し,5種類のSiC MOSFET に対して,パ ルス大電流に対するターンオン時間,オン抵抗の特 性を調べた.その結果,製品Dは~250A 程度まで, 製品Eはより大きな電流まで,ターンオンが100ns 未満かつ,オン抵抗の増加がない領域で使用できる ことが分かった.すなわち,小型,低コストな半導体 パルスパワー電源に適した素子であることが分かっ た.今後の予定としては,上記SiC MOSFETの採用 により,並列数を減らした半導体パルスパワー電源

Figure 2: The gate voltage waveform.

Figure 3: The V_{DS} and I_D waveforms of product C.

PASJ2020 THPP43

を実際に製作し、(並列数の多い)従来型との性能比 較や、コストダウンの実現可能性について調査する.

Figure 4: The dependence of turn-on time and onresistance on I_D .

参考文献

 A. Tokuchi *et al.*, Proceedings of the 14th Annual Meeting of Particle Accelerator Society of Japan, Sapporo, Japan, Aug. 1-3, 2017, TUOM02.