PASJ2017 WEP055

SuperKEKB 加速器 Phase2 に向けた大電力高周波源の状況 CURRENT STATUS OF THE HIGH-POWER RF SYSTEMS IN SUPERKEKB FOR PHASE2

渡邉謙^{#, A)}, 吉田正人^{A)}, 吉本伸一^{A)}, 丸塚勝美^{A)} Ken Watanabe^{#, A)}, Masato Yoshida^{A)}, Shin-ichi Yoshimoto^{A)}, Katsumi Marutsuka^{A)}, ^{A)} KEK

Abstract

The maintenance of various components for the high-power rf system is being carried out for the SuperKEKB Phase 2. A high-power rf system was also built at the positron damping ring from November 2015 to December 2016 for LER. The current status of high-power rf system for the positron damping ring and the main ring will be reported in this paper.

1. はじめに

SuperKEKB 加速器 MR 地上部大電源棟に設置され ている大電力高周波源では、2016年2月から2016年6 月末まで行われた Phasel 運転終了後、Phase2 に向けて 各種機器のメンテナンスを行っている。また、2018年初 頭に予定されている Phase2 運転開始に向けて、Phase1 運転開始前の2015年11月から2016年12月にかけて、 新たに陽電子用ダンピングリング (Positron damping ring) [1] に対する大電力高周波源の建設が行われた。本報 告では陽電子用ダンピングリングおよび主リングにおけ る大電力高周波源の状況について報告する。

2. Phase1 運転時の状況

2.1 運転状況

2016年2月から2016年6月にかけて行われたPhasel 運転時に発生した大電力高周波源における主なトラブ ルについて以下にまとめる。

クライストロンのコレクター冷却には蒸気冷却システム が使用されるが、その配管系(特に熱水部分)にて機器 の動作不良や水漏れが頻繁に発生した。主な内訳は以 下の通りであり、サイトグラス10台(66台中)から水漏れ、 フレキ管(連通管)4本から水漏れ、給水制御用モーター バルブ2台が故障、リザーブタンク用レベルスイッチ2台 の動作不良、AFC本体フィンチューブ(D7電源棟)か ら水漏れ他である。これらの原因は主に老朽化および経 年劣化によるものであり、適宜、予備品と交換、または補 修工事を行い対応した。

一方、立体回路系では D7-D に設置されたサーキュ レーターの冷却水水路からの水漏れが 5 月中旬に発生、 リーク当初のリーク量は微少量であったが、経過観察中 にリーク量が急激に増加したため 5 月末に LER の運転 から外した。この際、クライストロンー空洞間の導波管は 地上部に配管された回路の途中で切り離し、立体回路 の空洞側には、同軸ダミーロードを設置、ビーム通過時 に発生するローディングをダンプする形とした。同軸ダ ミーロードへ到達するパワーは LER の蓄積電流が 768 mA のときで 200 W 程度であった。この値は ARES 空洞 のデチューン量に依存する。この水漏れが発生したサーキュレーターは2017年度中に水路の修理を実施する。

加速器運転中、定期的に立体回路からの電波漏れを 測定している。今回の運転で電波漏れが検出された箇 所は、トリスタン初期に製作された導波管(現行と製作方 法やフランジ構造が異なる)とのフランジ間の接続面から が多かった。対策として可能であれば予備品と交換、ま たは導電性テープなどを用いてリーク箇所を封しした。 電波漏れ対策の一環として Phase2 に向け、立体回路の 一部の更新を計画している。

Table 1: Status of High-power Rf System in DR

Frequency	508.9 MHz
Operation	CW
Klystron	Toshiba E3786 (Repair)
	*Max output power: 500 kW *Vapor cooling
KPS	Type-B (Moved from D4-C)
	* Control panel updates to new
Circulator	1 MW UHF, 4 port-type
Loads	400 kW Water-load (MT#4) 250 kW Water-load (Cir#3)
	30 kW Dummy load (Cir#4)
Waveguide	WR-1500
Number of	2 (ARES cavity)
cavities	Input power: 150 kW/ cavity Operation field: Total 1.4 MV

3. Phase2 に向けた取り組み

3.1 陽電子用ダンピングリングにおける大電力高周波 源の建設

2015年11月からダンピングリング用大電力高周波源の建設が開始された。建設はクライストロン電源の移設から始まり、次いでクライストロンのコレクター冷却用冷却

[#] kenw@post.kek.jp

Proceedings of the 14th Annual Meeting of Particle Accelerator Society of Japan August 1-3, 2017, Sapporo, Japan

PASJ2017 WEP055

塔の設置、クライストロンの移設、蒸気冷却系の建設の 順で進められた。Figure 1 にレイアウト、Fig. 2 に建設後 の電源棟内の様子を示す。また、表1にRFのステータ スを示す。クライストロン電源はトリスタン終了後から休止 中の D4-C (B型)を D4 電源棟から移設した。 クライスト ロン電源の更新箇所は電源制御盤のみであり、その他 の電源本体(高圧部)については、通常点検を経た上で 継続して使用する。クライストロンは KEKB 運転時にクラ ブ空洞用に使用していた球を D11-E から移設した。この クライストロンは出力カップラーの冷却系を水冷式から風 冷式へ改修したものであり、このため最大出力は500kW に制限される。ダンピングリングで要求される RF パワー は空洞あたり約150kW、Phase2開始時の空洞数は2台 であり、現時点で問題になることはない。また、同様にク ラブ空洞用に D11-F で使用されていたクライストロンをダ ンピングリングの予備機として同電源棟内に保管してい る。

クライストロンのコレクター冷却に用いられる蒸気冷却 系 (AFC)の建設では、コレクターから発生した蒸気を凝 縮するために使用するバンドルのみ主リングの予備品か ら流用した。風冷用ファン、制御系など他一式は新たに 調達し設置した。

Figure 1: Layout of the high-power rf system for the positron damping ring.

ダンピングリングの RF システムは、クライストロン 1 台 で2空洞を運転する構成である。このため、サーキュレー ター出力以降は Magic-T を介し、高周波電力を 2 分岐 する。また、地下トンネルに設置された空洞間の距離に 対応した位相差(約 90°)を設けるため、分岐後の各々 のラインに全体の線路長を考慮した上で位相器を設置し ている。サーキュレーター、ダミーロードは主リングの予 備品を流用し、導波管(WR-1500)の一部(直管、H ベン ド)のみを新規製作という形で建設を進めた。

LLRF 設置後の 2016 年 12 月にサーキュレーター出 力直後の箇所にショート板を挿入し、地上部のみにおけ る RF 出力試験を実施し、蒸気冷却系などの各種システ ムの動作試験・調整運転を行った。2017 年 5 月から6 月 にかけて ARES 空洞 2 台のコンディショニングが開始さ れた。このとき最大で 354 kW の RF を出力し、加速器運 転で要求される出力が得られることを改めて確認した。

Figure 2: High-power rf system in the building for positron damping ring (PDR).

3.2 主リングにおける各種機器のメンテナンス状況

大電力高周波源で使用されている機器のほとんどはト リスタン時に製造・設置され、未だに使用開始から 30 年 を経過したものが多くを占める。これらの更新の一環とし て、日光地区では大電力用ウォーターロードに用いる純 水系冷却水循環装置のポンプおよび制御盤の更新を実 施している。他にも富士地区の立体回路の導波管の更 新作業を進めている。

Figure 3: Broadband performance of the Rectangular-type water-load (dependence of water quality at 50 C).

SuperKEKB 用に新規製作した大電力用ウォーター ロード[2,3]の運転にあたり、高周波電力の吸収体とし て使用する循環水として KEKB 時代と同様に市水を採 用していたが、系統に腐食が発生した。長期運転を考慮 し、Phase1 運転前までに矩形導波管型、円筒導波管型 の2種類のウォーターロードに対する電気的特性の水質 (導電率)および水温依存性の調査した。市水(Tapwater)の導電率は、採取場所により若干異なるが、 300~360 µS/cm であった。純水に市水を混ぜ、混合水と し、チラーを用いて水温を制御しつつ測定を実施した。

PASJ2017 WEP055

水温 50℃における測定結果を Fig. 3、 Fig. 4 に示す。

双方ともに純水のみの場合が一番特性が悪く、円筒 導波管型では 508.9 MHz における SWR は 1.2 を超え た。要求される SWR は 1.2 以下であることから、市水の 含有量として 10%(導電率:約 30 µS/cm)程度は必要と なることが分かる。矩形導波管型は、純水とした場合でも 要求値(SWR<1.2)を満たすことを改めて確認した。現在、 循環水の導電率は、各電源棟共に 10~25 µS/cm として 運用している。定期的に循環水の導電率をモニターし、 水質の管理も合わせて行っている。また、市水使用時に 発生した腐食に対する修理も必要に応じて実施している ところである。

Figure 4: Broadband performance of the Cylindrical-type water-load (dependence of water quality at 50 C).

3.3 クライストロンの状況

SuperKEKB 加速器主リングおよびダンピングリングで 使用されるクライストロンはすべて東芝製 E3732、E3786 である[4]。現在、クライストロンの予備機の動作確認試 験を通常の保守点検と共に行っている。動作試験を行っ ている予備機は、トリスタン時に製造し運転に使用、 KEKB 運転時には休止していたものであり、運転時間は 比較的短いが製造より年数が経過している球である。試 験は MR 地上部にある D2 電源棟 DT ステーションで行 われ、耐電圧、RF 出力特性の確認などが行われている。 動作状況に応じて、予備機の改修も検討しているところ である。

Figure 5 に SuperKEKB のために保有する全クライスト ロンの Phase1 終了後における運転時間を示す。対象と したクライストロンは予備機、PF-AR、テストステーション のものを含む計45 台である。クライストロンの平均運転時 間はそれぞれ、E3786 (25 台)で56,735 時間、E3732 仕 様 (20 台)で18,422 時間である。最大運転時間は、T27 (E3786)の約 11 万時間 (108,843 時間)である。この球 は、トリスタン開始直後から使用され続け、KEKB を経て、 SuperKEKB Phase1 終了時の現在でもなお稼働している ものである。最小運転時間は、T69 (E3732)の 2,872 時 間である。これは KEKB 終了後に SuperKEKB 建設のた めに調達し、Phase1 の期間のみ運転した球である。また、 予備機は 7 台あるが内 4 台は SuperKEKB 建設時に調 達および改修したものであり、運転時間は 1,000 時間未 満の球である。

Figure 5: Summary of the operation time of klystrons in MR and PDR for SuperKEKB.

4. まとめと今後の予定

本報告ではSuperKEKB加速器における大電力高周 波源の状況について述べた。大電力高周波源のコン ポーネントの多くはトリスタン時に調達されたもの が未だに数多く使用されており、一般的に要求され る使用期間を超えた領域で運転を行わなければいけ ない。特に多くのクライストロン電源は製造されて から33年が経過し、変圧器など高圧機器においては 一般に要求される30年という期間を超えている。ま た、小型電源の故障による制御系のトラブルなど、 今後、細かなトラブルが頻発することも同時に予想 される。このように故障が予想される箇所に対して、 予備品の調達など可能な限り準備を行い Phase2 の運 転に備えたい。

参考文献

- M. Kikuchi *et al.*, "Design of positron damping ring for Super-KEKB", Proceeding of IPAC10, Kyoto, Japan. May. 23-28, 2010, pp. 1641-1643.
- [2] K. Watanabe *et al.*, "SUP050", Proceedings of the 10th Annual Meeting of Particle Accelerator Society of Japan, Nagoya, Japan, Aug, 2013.
- [3] K. Watanabe *et al.*, "SUP052", Proceedings of the 11th Annual Meeting of Particle Accelerator Society of Japan, Aomori, Japan, Aug, 2014.
- [4] K. Watanabe *et al.*, "WEP065", Proceedings of the 12th Annual Meeting of Particle Accelerator Society of Japan, Tsuruga, Japan, Aug, 2015.