PASJ2017 TUP009

広島大学放射光科学研究センターの将来光源の検討

FUTURE PLAN FOR LIGHT SOURCE AT HIROSHIMA SYNCHROTRON RADIATION CENTER, HIROSHIMA UNIVERSITY

川瀬啓悟#, 松葉俊哉

Keigo Kawase [#], Shunya Matsuba Hiroshima Synchrotron Radiation Center, Hiroshima University

Abstract

From 1996, the racetrack type synchrotron has been used as a synchrotron radiation source at Hiroshima Synchrotron Radiation Center (HSRC). Although this apparatus is compact, the beam emittance is large due to its structure. Thus, there are much requests to upgrade to a low-emittance ring for a long time. The accelerator group at HSRC have studied and developed designs of the future light source in detail. In this report, we present briefs of past studies and recent activities for the design of the light source.

1. はじめに

広島大学放射光科学研究センター(HSRC)では 1996 年より現在まで、レーストラック型電子シンクロトロンによ る放射光源を供用している[1]。通称 HiSOR と呼ばれて いるこの光源は小型ではあるが、その形状からビームエ ミッタンスが大きく、利用者からは早期の低エミッタンス蓄 積リングへの更新の実現を望まれている。また、現在の HiSOR には直線部 2 本で双方にアンジュレータが導入 されているが、ともに利用課題申請が集中しており、昨年 度からはすべての申請課題に対して利用時間を割り与 えることができなくなっている。そのため、HSRC の加速 器研究グループでは長年、将来光源の設計研究が詳細 に実施されてきた。また、それらに引き続き現在も、低エ ネルギー低エミッタンス光源として最適な加速器の基本 設計研究を継続している。

本報告では、これまでの設計研究の成果の中から2つ のタイプの小型蓄積リングについての概要を紹介する。 続いて、現在実施している将来光源設計のための基礎 的な研究についての現状を示す。

2. これまでの研究成果

2.1 MAX III 型蓄積リング

2000年代の中頃では、HiSORと同様のエネルギー領 域の放射光源としては、分子科学研究所の UVSOR、ス ウェーデン・ルンドの MAX III、中国・合肥の HLS、デン マーク・オーフスの ASTRID などがあった。そのような情 勢で当時もっともコンパクトな設計で低エミッタンスな蓄 積リングであった MAX III を参考に、周長 40 m でエミッ タンス 13.57 nmrad、直線部を8本(3.4 mと2.0 m が4本 ずつ)持つ挿入光源を多数利用できることを見越したリン グの設計研究が進められた[2]。MAX III では入射エネ ルギーと蓄積エネルギーが異なり、リングでエネルギー を加速する必要があったが、この設計ではフルエネル ギー入射のために小型ライナックとブースターシンクロト ロンを入射器系として利用することとなっている。さらに、 放射線遮蔽を容易にするために、入射器系は地下に設 置する。

2.2 トーラス結び目型蓄積リング

2010年代になって、HSRC加速器研究グループにおいて全く新しい概念の蓄積リングが考案された[3]。これは1周でリングが閉じるのではなく、3周して閉じるというものである。幾何学的にはトーラス結び目を平面内に導入したもので、これにより同じ設置面積において、3倍の軌道長を確保できる。この概念を基に設計することで、前出のMAX III 型蓄積リングと同じ設置面積において、11本の4m直線部を確保することができるリングとなる。

このトーラス結び目型蓄積リングの設計を進めることで、 現在のところ、電子ビームエネルギーが700 MeV におい て、周長 147.5 m でエミッタンス 8.10 nmrad に達する設 計となっている。この設計ではセル当たりに2つの偏向磁 石とその半分の長さの2つの偏向磁石を導入したマルチ ベンド構造となっておりエミッタンスを低減している。さら に、直線部での分散関数がゼロとなるようなアクロマット 構造となっている[4]。

このトーラス結び目型蓄積リングの設計においても、 前出の MAX III 型の設計と同様に、フルエネルギー入 射を前提とした入射器系を導入している。

3. 光源設計のための基礎研究

これまでの設計研究を含めて光源加速器の更新を 実現するために、光源設計についての基礎的な研究 を開始している。ここではこれまでに実施した検討 事項についての詳細を示す。

3.1 リングのエミッタンス

理論的に最小な電子蓄積リングの水平方向のエミッタンス ε_x は電子ビームの規格化エネルギー γ と偏向磁石 1 個当たりの偏向角 θ 、およびセル当たりの偏向磁石の個数Mとして、次のように表現できる[5]。

[#] kawase@hiroshima-u.ac.jp

PASJ2017 TUP009

$$\varepsilon_x = \frac{C_q \gamma^2}{J_x} \theta^3 \frac{1}{12\sqrt{15}} \left(\frac{M+1}{M-1}\right) \tag{1}$$

ここで C_q は定数で $C_q = 3.84 \times 10^{-13}$ [m]である。 J_x は水 平方向のダンピングパーティションナンバーで、垂直方 向 J_y 、縦方向 J_z のものと合わせて以下の関係を持つ[6]。

$$J_x + J_y + J_z = 4$$
 (2)

式(1)を用いて、偏向磁石の総数とセル数、エミッタンス とを比較して、おおよその設計の目安とすることができる。

3.2 周長の目安

電子ビームのエネルギーを 700 MeV とすると、マグネ ティックリジディティ $B\rho$ は $B\rho$ = 2.335 Tmとなり、偏向半 径 $\rho < \rho = 2$ mとすると偏向磁石の磁場 B は B = 1.1675 Tとなる。そのため、設計としては B = 1.0 – 1.2 Tの磁場を想定する。従って、偏向半径 2 m の場合、 偏向磁石のみのリングの周長は2 $\pi\rho$ = 12.56 mとなる。

HSRC の敷地を考えると40 mから50 mが限界である から、4 極磁石の設置位置も含めた直線部に利用できる 長さは各々27.44 m、37.44 mとなる。この長さをセル数で 分けることになるので、セル数が多いほど挿入光源の設 置数を増やすことができるが、1つの直線部の長さは短く なる。真空封止ではないアンジュレータを用いることを前 提とすると 2.5 m 以上の直線部の確保が望まれるので、 セル数を好きなだけ増やすということは、周長を制限する 限り困難である。

3.3 スペック上限の設定

装置を設計する上での指標として、まずは偏向磁石の 臨界エネルギーを回折限界光のエネルギーとして設定 する。回折限界エミッタンスε_rは以下のように表現するこ とができる[7]。

$$\varepsilon_r \cong \frac{\lambda}{4\pi}$$
 for gaussian (3)
 $\varepsilon_r \cong \frac{\lambda}{2\pi}$ for nongaussian (4)

今 700 MeV で 1.2 T の蓄積リングを考えると臨界エネ ルギーは 391 eV(λ = 3.2 nm)となる。従って光のプロ ファイルがガウス分布の場合、回折限界エミッタンスは 0.255 nmrad、非ガウス分布の場合、0.51 nmrad となり、 J_x = 1.2を仮定すると、それぞれ 7 セルの Quadruple Bend Achromat、8 セルの Triple Bend Achromat に相当 する。

もう少し条件を緩和するために、現在の HiSOR のアン ジュレータビームラインにおいて用いられている波長領 域に着目する。現在、可変偏光アンジュレータでは主に 10 eV 以下の領域の利用、平面アンジュレータでは 100 eV 以下の利用が多い。そのため、これらの波長を回折 限界として設定すると、ガウス型プロファイルに対してそ れぞれ 10 nmrad、1 nmrad のエミッタンスが要求される。 前者の場合は Double Bend Achromat 5 セル、後者の場 合は TBA 7 セルで達成することができる。そのため、現 在のところ、700 MeV の電子ビームエネルギーで周長 50 m 以下、水平方向エミッタンス 1 nmrad を目標に蓄積リン

グを設計することとしている。

3.4 Triple Bend Achromat

小型アクロマット蓄積リング設計の手始めとして、 Triple Bend Achromat (TBA)を単純な構造で構築できる かどうかを検討した。1 セルを3つの偏向磁石と4 つの4 極磁石で構築し、7 セルで周長 40 m 蓄積リングを設計 することを試みた。偏向磁石の内、中心のものには水平 収束機能を、その他の2つには垂直収束機能をそれぞ れ付加した。4 極磁石は外側の2 つを組に、内側の2つ を組にと、2つの組を形成するようにした。

周期的なベータ関数と分散関数を探すために、ここでは計算コード MAD-X を用いた[8]。計算コードの入力ファイル中で4 極磁石と偏向磁石の4 極成分を適当に動かすことで、比較的簡単に直線部分で分散がゼロとなる周期解を得ることができた。しかしながら現在のところ、TBA での設計では、中心の偏向磁石内において分散を小さくすることができておらず、エミッタンスは31 nmradとなり、期待した低エミッタンスは得られてない。

3.5 Double Bend Achromat

デンマークのオーフス大学では最近、ASTRID2 と呼ばれる小型の低エネルギー低エミッタンス放射光源を運用している[9]。ここでは電子ビームのエネルギーが 580 MeV で、6 セルの Double Bend Achromat (DBA)で周長 46 mの蓄積リングにおいて 10 nmrad のエミッタンスを得ている。そこでこれを参考に DBA で 700 MeV の低エミッタンスリングを構築することを試みた。

磁石の配列はASTRID2と同じ、垂直収束機能を持つ 2 つの偏向磁石と4 つの水平収束の4 極磁石のみで構成する。ASTRID2よりも低エミッタンスを得るために、8 セルでリングを構成する。直線部の長さに余裕を持たせるために、ここでは周長50mで設計することとしている。

TBAと同様に MAD-X を用い、比較的簡単に周期解 が得られた。磁場勾配や磁石位置の最適化を必ずしも 実施していないから、直線部で Achromat な設計で、エ ミッタンス 2.8 nmrad、分散を持たせることで 0.34 nmrad と いう値が得られた。双方の場合で水平方向のダンピング パーティションナンバーは 2.2 程度となる。

以上2つの設計の検討を始めて、しばらくはDBAを中心に設計を進めていくつもりである。今後、磁石位置などの最適化を調査するとともに、ダイナミックアパーチャー等の詳細設計に必要な検討も実施する。

4. まとめ

広島大学放射光科学研究センター光源加速器研究 グループでは、HiSORのアップグレード計画のため に長年、小型低エミッタンスリングの設計研究を実 施してきた。これまでに、2つの蓄積リングの詳細 な設計が研究されてきた。それらに加えて、より単 純ではあるが低エミッタンスなリングの可能性につ いての検討を開始した。今後、どのようなリングが HiSORのアップグレードに対して最適かを、多くの 利用研究者の意見と加速器研究者の助言を伺いなが ら、検討していく。

PASJ2017 TUP009

謝辞

本研究の一部は、高エネルギー加速器研究機構平 成29年度加速器科学総合支援事業「大学等連携支援 事業」の支援を受けて実施しております。

参考文献

- M. Taniguchi and J. Ghijsen, J. Synchrotron Rad. 5 (1998) 1176-1179.
- [2] A. Miyamoto *et al.*, "HiSOR-II, future plan of Hiroshima Synchrotron Radiation Center", Proceedings of IPAC'10, Kyoto, Japan, May 23 – 28, 2010, pp. 2546 – 2548.
- [3] 佐々木茂美,宮本篤,"トーラス結び目と加速器ラティスの 魅惑的な関係", Proceedings of the 8th Annual Meeting of Particle Accelerator Society of Japan, Tsukuba, Japan, Aug. 1-3, 2011, pp. 1036-1038.
- [4] 宮本篤, 佐々木茂美, "Multi-bend ラティスを採用したトーラス結び目型小型超低エミッタンス放射光源リング", Proceedings of the 11th Annual Meeting of Particle Accelerator Society of Japan, Aomori, Japan, Aug. 9-11, 2014, pp. 504-506.
- [5] A. Wolski, "Sorage Ring Design Part 2: Equilibrium Emittance and Storage Ring Lattice Design", Joint US-CERN-Japan-Russia School on Particle Accelerators, Cource on Synchrotron Radiation and Free Electron Lasers, Erice, Sicily, Italy, April 2011.
- [6] H. Wiedemann, "Particle Accelerator Physics", 3rd ed., p. 299, Springer-Verlag Berlin Heidelberg, 2007.
- [7] R. Hettel, J. Synchrotron Rad. 21 (2014) 843 855.
- [8] http://mad.web.cern.ch/mad
- [9] S.P. Møller, N. Hertel, J.S. Nielsen, "Status and very first commissioning of the ASTRID2 synchrotron light source", Proceedings of IPAC2013, Shanghai, China, May 12 – 17, 2013, pp. 64 – 66.