PASJ2017 TUOM01

SiC-MOSFET の LTD 回路を用いた RCS キッカー用新電源の開発

DEVELOPMENT OF A NEW POWER SUPPLY FOR THE RCS KICKER MAGNET WITH THE LTD CIRCUIT OF SIC-MOSFETS

高柳智弘^{#, A)}, 金正倫計 ^{A)}, 山本風海 ^{A)}, 植野智晶 ^{A)}, 堀野光喜 ^{A)}, 徳地明 ^{B)}, 虫邊陽一 ^{B)} Tomohiro Takayanagi ^{#, A)}, Michikazu Kinsho^{A)}, Kazami Yamamoto^{A)}, Tomoaki Ueno^{A)}, Koki Horino^{A)}, Akira Tokuchi^{B)}, Yoichi Mushibe^{B)}

i Tokuchi ², Tolehi Mush

A) J-PARC/JAEA

^{B)} Pulsed Power Japan Laboratory Ltd

Abstract

A new pulse power supply applying a SiC-MOSFET to LTD (Linear Transformer Drivers) circuit has been developed. This LTD has a circuit configuration in which multiple SiC-MOSFETs and large capacity capacitors are multiplexed in series-parallel with one circuit board. By using the power supply units of the LTD modules adopting a multistage hierarchical structure in parallel, the specification of the J-PARC RCS kicker power supply with a voltage of 40 kV, a current of 4 kA and a rectangular wave pulse width of 1500 ns is satisfied. Furthermore, by providing an absorption circuit in the LTD circuit, it is possible to configure a compact power supply without the thyratron switch, the PFN cables and the end clipper. Moreover, by adding a plurality of correction boards of 40 V and arbitrarily setting the operation trigger of the board, ± 0.1 % flatness correction is also possible. In this paper, the results of the preliminary test with the maximum output of 4 kV / 2 kA are presented.

1. はじめに

低損失、高耐圧を実現した次世代パワー半導体の一 つである SiC-MOSFET を用いた新しいパルス電源の開 発を行っている。このパルス電源は、複数の SiC-MOSFET と大容量コンデンサを1枚の基板上で直並列 に多重化した LTD(Linear Transformer Drivers)回路[1] (モジュール)で構築する。出力が 800 V/2 kA の主基板 50 枚と40 V/2 kA の補基板 20 枚を直列多段で階層した 電源ユニットを構築し、更に、これを並列に接続して、J-PARC(Japan Proton Accelerator Research Complex)[2] RCS(Rapid Cycling Synchrotron)[3]のキッカー電源 [4][5]に必要な電圧 40 kV、電流 4 kA、矩形波パルス幅 1500 nsの出力と、±0.1%の電圧波形調整を可能とする。 また、主基板の回路には、FET スイッチと抵抗器を用い た反射波吸収回路を組み込む。これにより、サイラトロン スイッチ、PFN(Pulse forming network)ケーブル、エンドク リッパの機能を LTD 回路で実現する。そのため、現キッ カー電源と比較して構造の簡素化とコンパクト化が期待 できる。回路設計と予備試験の結果について報告する。

2. RCS キッカー電源

RCS では、3 GeV に加速されたビームを、双子構造の 分布定数型電磁石と高電圧パルス電源を組み合わせた 8 台のシステムでビームを蹴り出している。負荷側のキッ カー電磁石は、終端を短絡させ全反射した 2 倍の電流 波形で所定の磁場を発生する。パルス電源は、双子型 電磁石に対応して 2 組のパルス出力回路を備えており、 1 回路当たり、充電電圧 80 kV、出力電流 4 kA、パルス 幅 1.3 µsec、25 Hz の出力運転を行う。スイッチには、e2v 製のサイラトロン(CX1193C)を使用している。 本システムは、運転を開始してから約10年が経過した が、この期間、サイラトロンスイッチの調整手法を確立す るために多くの時間を費やしてきた。そして、確立した維 持管理手法[6]-[8]により、キッカー電源の停止率(RCS 加速器の総運転時間に対してキッカー電源が原因で加 速器が停止した時間の割合)が、2009年の13%から 0.2%まで減少し、サイラトロンスイッチを原因とする加速 器の停止は大幅に減少した。

しかし、この維持管理手法は、工場で耐電圧試験に 合格して購入したサイラトロンに対し、電源のスイッチとし て使用する前に、1本当たり平均 35 時間のコンディショ ニングを必要とする。更に、加速器の運転期間中は、24 時間連続で取得した波形データをベースに、サイラトロ ンのレンジングを管理者が毎日行っている。サイラトロン の平均寿命は、維持管理手法が確立する前は 3,000 時 間程度であった為、1 年を通して使用することができな かった(加速器の運転は年間約 5,500 時間)。維持管理 手法が確立した現在は、平均 10,000 時間になったが、 原因不明で突然使用できなくなる事象が極たまに今でも 発生する。10,000時間使用できた場合でも、1、2年での 交換が必要になる。RCS キッカーシステムでは、常時 16 台のサイラトロンを必要とする為、相当数の在庫を確保し なければならない。安定した加速器運転を継続するには、 スペシャリストの管理者とサイラトロンの在庫の維持が必 要であり、ランニングコストが高くなる。

3. 新パルス電源

3.1 設計仕様

安定した運転の実現とランニングコストを低減する為、 サイラトロンスイッチを使用せず、安定性、信頼性、メンテ ナンス性(長寿命)に優れた半導体スイッチを用いて新し いパルス電源を開発する。新電源は、半導体スイッチと

[#] tomohiro.takayanagi@j-parc.jp

PASJ2017 TUOM01

誘導電圧重畳回路を組み合わせた高電圧・大電流の波 形出力と、ナノ秒オーダーの波形制御が可能な LTD 回 路[1]をベースに設計した。LTD 回路は、基板上に配列 する半導体などの素子の並列数を増やすことで電流増 に対応し、モジュール化した LTD 回路基板を直列に積 み上げた階層構造とすることで電圧増に対応できる。

LTD 回路を採用した新パルス電源を RCS キッカー電源として使用するために必要な仕様を Table 1 に示す。 また、新パルス電源の主な特徴を以下にまとめる。

Table 1: New Power Supply Specifications

Max output voltage	40 kV
Max output current	4 kA
Withstand voltage for reflected wave	$\pm 40 \ kV$
Pulse width of the output waveform	1500 ns
Rise time of the rectangular wave	Under 250 ns
Flat top accuracy (Target value)	± 1.0 %(± 0.5 %)
Repetition frequency	25 Hz

- PFN ケーブルを用いた充電回路を使用しない為、 充電電圧の定格は現仕様の半分になる
- 終端短絡により出力波形の極性と反転した反射波
 に対する耐圧を確保する為、バイポーラ構造とする。
- 出力波形の反射波吸収(エンドクリッパ)用と、周回 ビームの誘起電圧[9][10]抑制用として、反射波吸 収回路を設ける。
- 充電コンデンサの放電による出力波形にはドルー プが生じる為、波形形成用とプラットトップ平坦度補 正用の2種類のLTD基板を使用する。

3.2 SiC-MOSFET 半導体スイッチ

半導体スイッチには、現在の主流であるシリコン デバイス(Si)と比較して、高耐圧、低オン抵抗、耐 熱性に優れたシリコンカーバイト(SiC)のMOSFETを 選択した。SiC-MOSFET は、スイッチング損失が非 常に小さく、IGBT 半導体でスイッチを構成した場 合に必要になる強制冷却を削減できる可能性がある ため、電源の小型化が期待できる。本電源で採用し た ROHM 製の SiC-MOSFET(SCT3030KL)の主な仕様 を Table 2 に示す。

Table 2: SiC-MOSFET Specifications

Drain - Source Voltage(V _{DSS})	1200 V
ON-Resistance (Typ.)(R _{DS(on)})	$30 \text{ m}\Omega$
Pulsed Drain Current (ID,pulse)	180 A
Junction Temperature (T _j)	175 °C

3.3 新パルス電源用 LTD 回路

矩形波形を出力する主回路(主基板)と、フラットップ平坦度を調整する補正基板(補基板)の2種

類の LTD 回路を設計した。Figure 1 に主基板の写真、 Figure 2 と Figure 3 に主基板と補基板の回路図をそれ ぞれ示す。

主基板は、出力したパルス波形に対し、終端短絡 負荷で反転した反射波が返ってくる為、FET を 2 直 列にしたバイポーラ構造とし耐圧を確保する。更に、 抵抗器で反射波を吸収する吸収回路をスイッチ回路 に並列に設けた。主基板 1 枚当たりに、FET スイッ チ、大容量コンデンサ、吸収抵抗の基本回路を15 並 列で構成し、800 V/2 kA を出力する。

サイラトロンスイッチを採用している電源回路は 通常時 OFF となる。そして、終端短絡されたキッ カー電磁石は真空ダクト内に配置されている為、周 回ビームからみると開放端となってインピーダンス が大きくなり、キッカーシステムに起因したビーム 不安定性を引き起こす[9][10]。そこで、吸収回路は、 電源が ON するまでの期間、抵抗側に接続してビー ム周回中の開放端状態を解決し、ビーム誘起電圧の 吸収用として活用することも検討している。

コンデンサの放電による出力波形は、電圧が低下 するドループが生じる。出力する矩形波の高いフ ラット平坦度を実現する為、電圧調整用の補基板を 追加する。補基板は、新キッカー電源の定格 40 kV に対し 1000 分の 1 となる 40V の充電回路とし、出 力波形の形成と補正に対し、±0.1 %の電圧分解能で の調整を実現する。

Figure 1: Picture of the main LTD module.

4. 試験結果

4.1 主基板の評価

主基板 1 枚を用いて、充電電圧 800 V、模擬負荷 抵抗 0.4 Ωの接続時の出力電流 2 kAの評価を行った。 結果を Figure 4 に示す。立ち上り時間は 120 ns、フ ラットトップ時間 1500 ns のドループが 40 V となり、 設計通りの結果が得られた。

PASJ2017 TUOM01

Figure 2: Basic circuit of the main LTD module.

Figure 3: Basic circuit of the correction LTD module.

Figure 4: Measurement result of the output voltage waveform at one main LTD module.

4.2 補基板の評価

主基板 5 枚、補基板 4 枚を直列に接続した階層構 造の電源ユニットを性能試験用に構成し、フラット トップのドループ調整の評価を行った。試験用電源 ユニットのブロック図と外観写真をそれぞれ Figure 5 と 6 に、補正調整前の出力波形の測定結果を Figure 7 に示す。主基板の 5 枚は全て充電電圧 800 V とし、 同じタイミングで出力する。この時、補基板は充電 していない。試験の結果、出力電圧は 3.8 kV となり、 ドループが 160 V 生じた。この波形に対し、40 V に 充電した 4 枚の補基板を用いて平坦度を補正した結 果を Figure 8 に示す。ドループは補正され、±0.5 % 以下の平坦度を達成した。この時、主基板の 5 枚は 全て同じタイミングで出力し、補基板の 4 枚は主基 板のトリガに対してそれぞれ 300 ns ずつずらして出 力した。各基板の出力制御用のトリガ波形の概念図 を Figure 9 に示す。出力電圧が設計値よりも小さく なった原因については、引き続き調査を行う。

Figure 5: Block Diagram of test power supply unit. It has a hierarchical structure in which 5 main modules and 4 correction modules are connected in series. The 400 mm in width, 430 mm in depth and 365 mm in height.

Figure 6: Picture of the test power unit.

4.3 吸収回路の評価

主基板に設けた吸収回路の評価を行った。試験で は、主基板の出力端からビーム誘起電圧を模擬した 10 V/550 kHz の AC 波形を入力し、FET スイッチの ON/OFF 時の FET スイッチと吸収抵抗の両端電圧を 測定した。測定時のブロック図を Figure 10 に、FET スイッチが OFF と ON の測定結果を、それぞれ Figure 11 と 12 に示す。試験の結果、SiC-MOSFET の オン抵抗は非常に小さく、誘導電圧を効果的に吸収 できることを確認した。

4.4 電源ユニットの性能評価

補基板の評価で使用した試験用電源ユニット(主 基板5枚、補基板4枚)の負荷抵抗を50Ωの同軸 ケーブル(5D-2V)に変更し、より実機に近い環境で 電源ユニットの性能評価を行った。150m、25本の 同軸ケーブルを並列に接続し、終端は短絡して反射 波を発生させる。電源ユニットの出力電流部と負荷 端にピアソン CT(MODEL 110)を取り付け、電流波形 も測定した。試験結果の波形を Figure 13 に、また、

Proceedings of the 14th Annual Meeting of Particle Accelerator Society of Japan August 1-3, 2017, Sapporo, Japan

PASJ2017 TUOM01

設計値と測定結果の比較を Table 3 に示す。

設計値に対して測定で得られた出力電圧は 94.2%、 出力電流は 84.5%と小さかった。また、ドループが 330 A と大きく、補基板 4 枚では完全に補正するこ とが出来なかった。ただし、主回路の充電電圧を 800 V から 360 V に下げ、ドループが 150 A になる試 験では、補正後、±0.5%以下の平坦度を確認した。 本試験でドループが大きかったのは、細い同軸ケー ブルを使用したことにより、抵抗成分が想定よりも 大きくなってしまった可能性がある。また、波形の 立ち上がり時間は、電力線との取り合い構造やプリ ント基板構造に起因したインダクタンスが影響する ため、回路基板内の電力線や接地線の幅を太くし、 より速い立ち上がり時間を実現する改造も合わせて 行う。

Figure 7: Measurement result of the output voltage waveform before correction adjustment.

Figure 8: Measurement result of the output voltage waveform after correction adjustment.

Figure 9: Conceptual diagram of trigger waveform for output control of each module.

Figure 10: Absorption circuit test circuit.

Figure 11: Measurement result of the terminal voltage when the absorption circuit SiC-MOSFET was turned off.

Figure 12: Measurement result of the terminal voltage when the absorption circuit SiC-MOSFET was turned on.

Figure 13: Measurement result using coaxial cable load with terminated short circuit.

Contents	Design value	Measurement result
Output voltage	4.00 kV	3.77 kV
Output current	2.00 kA	1.68 kA
Short circuit current	4.00 kA	3.38 kA
Rise time	Under 250 ns	166 ns (10%-90%)

 Table 3: Comparison between Design Value and Measurement Result

4.5 温度評価

電源ユニットの性能評価で使用した負荷を用いて、 25 Hz 運転時の SiC-MOSFET と反射波形による吸収 抵抗の発熱測定を行った。測定時の外観と測定個所 を示す写真を Figure 14 に、測定結果を Figure 15 に 示す。送風機は弱の設定で使用し、素子温度は光 ファイバ温度計で測定した。10 分間の運転で温度は 飽和し、送風機側の吸収抵抗が 95 ℃、反対側が 102 ℃になった。FET の温度上昇は 2 ℃でほとんど 変化は見られなかった。

新キッカー電源は、故障時のメンテナンス性を考 慮し、現在、実機で使用しているシリコンオイルに よる油冷システムを使用せず、空冷ファンによる冷 却を検討している。そのため、現在1回路1個の吸 収抵抗を複数本の並列回路にして発熱を低減する。

Figure 14: Picture of the appearance at the time of measurement and measurement points.

Figure 15: Measurement result of the device temperature at the 25 Hz operation.

5. まとめ

低損失、高耐圧の SiC-MOSFET を用いた LTD 回 路を用いて新しいパルス電源を開発した。予備試験 の結果、フラットトップ平坦度の補正調整と吸収回 路は、設計通りに機能することを確認した。これよ り、サイラトロンスイッチを半導体スイッチに置き 換えた RCS キッカー用新電源の実現に見通しが立っ た。予備試験で測定された電流と電圧が設計値より も小さい問題については、引き続き、原因究明と対 策を行っていく。

今後は、R&D 機として製作した実機相当のキッ カー電磁石を用いて、励磁波形の評価を行う。更に、 主基板 50 枚と補基板 20 枚を多段に階層した 40 kV/2 kA 出力の LTD 電源ユニットを製作し、定格運転時 の評価を行う。また、定格の電源ユニット 2 台にて 双子型回路を構築し、制御とタイミングの評価を行 う。更には、実機で想定している 2 台並列化にて 8 kA 反射波による発熱評価を行う。

本電源で採用する SiC-MOSFET の LTD 回路は、 電源の安定化と小型化が期待できるシステムである。 また、モジュール化された基板は、故障部分だけを 容易に交換可能とするメンテナンス性と、電源とし ての基本構造がモジュールの設計だけと少なく、そ して、部品点数を少なく出来る為、予備品の種類と 数を低減できるなど低コスト化としても優れている。 SiC-MOSFET の LTD 回路電源において、引き続き評 価試験を進め、問題点の洗い出し及び対策実施を経 て、実機製作を早期に実現する。

参考文献

- W. Jiang *et al.*, "Pulsed Power Generation by Solid-State LTD", IEEE Transactions on Plasma Science, Vol.42, No.11, Nov. 2014m pp.3603-3608.
- [2] http://j-parc.jp/index.html
- [3] K. Yamamoto et al., "J-PARC 3 GeV シンクロトロンでの大 強度運転の状況", Proceedings of PASJ2015, FAP031.
- [4] J. Kamiya et al., "THE EXTRACTION KICKER SYSTEM OF THE RCS IN J-PARC", Proceedings of 2005 PAC, Knoxville, Tennessee, pp1009-1011.
- [5] M. Watanabe et al., "JJ-PARC 3GeV RCS 入出射用電磁 石電源システムの運転と現状", Proceedings of PASJ2011, MOPS055.
- [6] T. Togashi et al., "RCS キッカー電磁石電源システムのサイ ラトロンオペレーションの現状", Proceedings of PASJ2010, WEPS084.
- [7] T. Togashi et al., "J-PARC 3GeV RCS キッカー電磁石電源 のサイラトロン運転維持管理", Proceedings of PASJ2012, WEPS042.
- [8] T. Togashi et al., "J-PARC 3GeV RCS キッカー電磁石電 源の現状", Proceedings of PASJ2016, MOP117.
- [9] N. Hayashi et al., "J-PARC RCS の入射エネルギー回復", Proceedings of PASJ2011, MOPS022.
- [10] Y. Shobuda et al., "THE KICKER IMPEDANCE AND ITS EFFECT ON THE RCS IN J-PARC", Proceedings of HB2014, TH02AB02.