

<u>阿部 哲郎</u>、竹内保直、坂井浩、影山達也、吉野一男、 増澤美佳、川本崇

高エネルギー加速器研究機構/加速器研究施設

日本加速器学会年会@北海道大学

2017年8月1日

SuperKEKB Accelerator Complex

New Positron <u>Damping Ring (DR)</u> for the low-emittance beam injection to SuperKEKB / LER(e⁺)

Parameters of the I	Damping Ring		MAC10	(N.Iida)
Energy	1.1	GeV	1.0	
No. of bunch trains/ bunches per train	2 / 2			
Circumference	135.5	m		2
Maximum stored current*	70.8	mA		
Energy loss per turn	0.091	MV		
Horizontal damping time	10.9	ms	12.7	
Injected-beam emittance	1700	nm	2100	
Equilibrium emittance(h/v)	41.4 / 2.07	nm	14 / 1.4	Car
Coupling	5	%	10	
Emittance at extraction(h/v)	42.5 / 3.15	nm	17.6 / 5.1	
Energy band-width of injected beam	± 1.5	%		
Energy spread	0.055	%		
Bunch length	6.5	m	5.4	
Momentum compaction factor	0.0141		0.0019	
Number of normal cells	32			電子陽電子人射器
Accel. voltage for 1.5 % bucket-height	1.4	MV	0.26	
RF frequency	509	MHz		✓建設の最終段階
Inner diameter of chamber	32	mm	.	✓2017年12日に立ち上げ予定
Bore diameter of magnets	44	mm		✓ SuperKFKB Phase-II 運転で使用

* 8 nC/bunch

DR用常伝導高周波加速構造

■加速モード周波数: 508.9 MHz (CW) (主リングと同じ)

■HOM減衰構造等の基本的構造はアレス空洞を踏襲

✓ 灰色領域:HOM吸収体(SiCセラミックス)■元々空洞1台のためのスペースに最大3台の空洞を設置可能

- 全加速電圧: Total V_c = 2.4 MV が可能
- ■(アレス空洞には無い)省スペース構造
 - HOM吸収体は全てコンパクトなタイル形状(48x48x20mm)のSiCセラミックス を採用
 - 隣り合う空洞がひとつの溝付ビームパイプを共有
 - 溝付ビームパイプは空洞に直結
 - 溝付ビームパイプは「TE&高次TMモード」を吸収(→SiCダクトの類いが不要)

■「マルチ・単セル」構造

- ●加速モードのビームパイプへの染み出し、及び、空洞間を行き来する高次 モードは溝付ビームパイプのHOM吸収体で十分減衰
- レゴブロックのように組み立てて、ひとつの大きな構造体となる
- (原理的には)空洞の個数可変、空洞交換可能

■真空ポンプを空洞本体に直結

デザイン・パラメータ								
運転周波数	508.9 MHz							
R_{sh}/Q_0	150 Ω							
Q ₀	約30000							
空洞電圧 V_c (運転時)	0.7 MV / cavity							
空洞電圧 V_c (空洞仕様)	0.8 MV / cavity							
壁面損失電力 @ V _c = 0.7~0.8 MV	約110~140 kW / cavity							

0. 零号機 (試験機) 製作(2011年度) 1. 1号機製作(2012年度)

2. 2号機製作(2013年度)

空洞電圧0.95MVまで問題なくRFコンディショニング済

The light blue lines indicate the reference vacuum pressure specified by the computer controlled automatic aging. If the vacuum pressure is higher than the reference, P_{in} is slightly stepped down until the vacuum pressure becomes lower than the reference, and then P_{in} is slightly stepped up as long as the vacuum pressure is lower than the reference.

その他のコンポーネント

7

7個のコンポーネント(加速空洞2台 & ビームパイプ5本)をアライメント →

DR用加速構造

合体後、長さ約3.8mのひとつの構造体となる

7個のコンポーネント(加速空洞2台 & ビームパイプ5本)をアライメント → 合体

(このような加速構造の据付は初めて)

✓ 中心軸に対する直角度:0.05mm(目標)
 ✓ フランジ加工後、ろう付け

✓ 中心軸に対する直角度:0.05mm(目標)
 ✓ 溶接後、フランジ面出し加工

アライメント方針

■ 据付精度は主リング/アレス空洞を目標とする:

- 直角方向 : <mark>0.3 mm</mark>
- (ビーム軸方向: **1.0 mm**)
- 対象:加速空洞のビームポート・フランジ
 - 主リングのアレス空洞では、
 - ▶ ビームパイプ中心(←アライメント・テレスコープ)
 - ▶ 空洞本体の基準座(←レーザートラッカー)
- ■ビーム軸の定義: RF区間上下流のQ磁石の4分割線
 ●レーザー墨出し器とオートレベルを使用

■ 事前にビームポート・フランジの位置計測を行う

0. ビームポート・フランジの位置計測

(測定日:2016年1月20~22、26日)

使用機器: FaroArm Edge

(可搬型CMM)

✓測定範囲(直径):1.8 m

✓ 5軸

✓ 定点繰返精度: 0.024 mm(スペック)

DR空洞のフランジ位置計測手順

座標設定方法

- 1. 上流側フランジの当たり面をXY平面とする。
- 2. ダクト内円の中心を当該当たり面に投影した点を座標原点(X=0,Y=0,Z=0)とする。
- 3. 上流側・上側基準面のM6ボルト穴を当該基準面に投影した点をY軸(Y>0)に置く。

→上流側フランジに対する下流側フランジの傾き&オフセットを測る

測定結果

✓ 表示値は3回の測定の平均値

✓ ±は3回の測定の最大・最小値と平均値の差

この結果を基に、空洞据付時の コンポーネントの向きと組み合わせを決める。

(測定日:2016	-01-20 ~ 22、26)	DR空洞 1号機	DR空洞 2号機	ダミー ダクト	空洞間 ダクト No.1	空洞間 ダクト No.2	空洞端 ダクトNo.1	空洞端 ダクトNo.2
当り面 間距離 ^{(デザイン値} からのずれ)	Total:	555.991 +0.003 -0.004	555.329 +0.008 -0.010	556.044 +0.006 -0.011	544.077 +0.006 -0.006	543.115 +0.002 -0.002	543.776 +0.006 -0.008	544.173 +0.001 -0.002
[mm]	-1.5mm	(-0.009)	(- 0.671)	(+0.044)	(+0.077)	(-0.885)	(-0.224)	(+0.173)
下流側 の上流 側に対	X軸まわ り (V)	0.164 + 0.009 -0.011	1.050 +0.013 -0.014	-0.099 +0.025 -0.034	0.262 +0.017 -0.018	-0.114 +0.014 -0.019	0.118 +0.006 -0.003	- 0.296 +0.028 -0.024
する傾 き [mrad]	Y軸まわ り (H)	0.566 + 0.020 -0.037	0.200 +0.015 -0.025	- 0.009 +0.021 -0.034	0.172 +0.001 -0.001	0.211 +0.045 -0.026	0.002 +0.017 -0.030	0.161 +0.045 -0.046
下流側の上流	Х	0.354 +0.016 -0.013	0.009 +0.007 -0.004	- 0.073 +0.010 -0.010	0.169 +0.007 -0.014	0.059 +0.018 -0.013	0.117 +0.014 -0.017	0.151 +0.017 -0.023
側に対 するオ フセット [mm]	Y	-0.077 +0.023 -0.017	- 0.133 +0.006 -0.003	0.054 +0.010 -0.009	-0.001 +0.014 -0.011	-0.053 +0.003 -0.004	0.040 +0.007 -0.006	0.325 +0.005 -0.009

オフセットは嵌合のあそびで吸収出来るので、 まずはフランジの傾きのみ考慮する

		DR空洞 1号機	DR空洞 2号機	ダミー ダクト	空洞間 ダクト No.1	空洞間 ダクト No.2	空洞端 ダクトNo.1	空洞端 ダクトNo.2
当り面 間距離 (デザイン 値からのず れ) [mm]		555.991 +0.003 -0.004 (-0.009)	555.329 +0.008 -0.010 (-0.671)	556.044 +0.006 -0.011 (+0.044)	544.077 +0.006 -0.006 (+0.077)	543.115 +0.002 -0.002 (-0.885)	543.776 +0.006 -0.008 (- 0.224)	544.173 +0.001 -0.002 (+0.173)
下流側 の上流 側に対	X軸まわ り (V)	0.164 + 0.009 -0.011	1.050 +0.013 -0.014	- 0.099 +0.025 -0.034	0.262 +0.017 -0.018	- 0.114 +0.014 -0.019	0.118 +0.006 -0.003	-0.296 +0.028 -0.024
する傾 き [mrad]	Y軸まわ り (H)	0.566 + 0.020 -0.037	0.200 +0.015 -0.025	-0.009 +0.021 -0.034	0.172 +0.001 -0.001	0.211 +0.045 -0.026	0.002 +0.017 -0.030	0.161 +0.045 -0.046
			0.009 +0.007 -0.004	- 0.073 +0.010 -0.010	0.169 +0.007 -0.014	0.059 +0.018 -0.013	0.117 +0.014 -0.017	0.151 +0.017 -0.023
側に対 するオ フセット 「mm」		- 0.077 +0.023 -0.017	- 0.133 +0.006 -0.003	0.054 +0.010 -0.009	- 0.001 +0.014 -0.011	- 0.053 +0.003 -0.004	0.040 +0.007 -0.006	

✓ 表示値は3回の測定の平均値

✓ ±は3回の測定の最大・最小値と平均値の差

		DR空洞 1号機	DR空洞 2号機	ダミー ダクト	空洞間 ダクトNo.1	空洞間 ダクトNo.2	空洞端 ダクトNo.1	空洞端 ダクトNo.2
下流側	X軸まわ	0.164	1.050	- 0.099	0.262	- 0.114	0.118	- 0.296
の上流	り	+ 0.009	+0.013	+0.025	+0.017	+0.014	+0.006	+0.028
側に対	(V)	-0.011	-0.014	-0.034	-0.018	-0.019	-0.003	-0.024
する傾	Y軸まわ	0.566	0.200	- 0.009	0.172	0.211	0.002	0.161
き	り	+ 0.020	+0.015	+0.021	+0.001	+0.045	+0.017	+0.045
[mrad]	(H)	-0.037	-0.025	-0.034	-0.001	-0.026	-0.030	-0.046

固定 (対称性はないので)

✓ 表示値は3回の測定の平均値

✓ ±は3回の測定の最大・最小値と平均値の差

		DR空洞 1号機	DR空洞 2号機	ダミー ダクト	空洞間 ダクトNo.1	空洞間 ダクトNo.2	空洞端 ダクトNo.1	空洞端 ダクトNo.2
下流側	X軸まわ	0.164	1.050	-0.099	—0.262	-0.114	0.118	-0.296
の上流	り	+ 0.009	+0.013	+0.025	+0.017	+0.014	+0.006	+0.028
側に対	(V)	-0.011	-0.014	-0.034	-0.018	-0.019	-0.003	-0.024
する傾	Y軸まわ	0.566	0.200	-0.009	0.172	0.211	—0.002	0.161
き	り	+ 0.020	+0.015	+0.021	+0.001	+0.045	+0.017	+0.045
[mrad]	(H)	-0.037	-0.025	-0.034	-0.001	-0.026	-0.030	-0.046
	(固定 対称性はな	いので)		ビーム軸 周り反転		ビーム軸 周り反転	

✓ 表示値は3回の測定の平均値

✓ 表示値は3回の測定の平均値

✓ 表示値は3回の測定の平均値

オフセット理論値

<u>基準面</u>からの150ダクト円中心までの距離

	DR空洞1号機 D		DR空洞	DR空洞2号機	
	上流側	下流側	上流側	下流側	度
上面	244.980 + 0.007 -0.006	244.987 +0.034 -0.024	244.926 +0.013 -0.023	245.036 +0.010 -0.008	245± 0.1mm
側面 (RF入 力側)	149.996 +0.002 -0.003	149.915 +0.028 -0.020	149.955 +0.003 -0.002	149.975 +0.007 -0.006	150± 0.1mm

✓ 表示値は3回の測定の平均値

1. ビーム軸墨だし

墨出し結果を記録・保持

天井のIビーム上

床面上

空洞架台の据付位置をマーク

2. 空洞架台据付

加速空洞ごと、移動、設置、アライメント(粗)

アンカー打設

アンカー打設後の空洞架台位置精度:約0.5mm(レーザー墨出し器で確認) (高精度アライメントは、加速空洞が備えているアライメント機構を使って後で行う)

3. 空洞個別アライメント

DR用加速空洞が備えている アライメント機構

个Horizontal 方向 のLMガイド Longitudinal 方向 のLMガイド↓

(LM: Linear Motion)

「架台」

ビームポート・フランジを アライメントする

空洞アライメントで使用した機器

レーザー墨出し器 TAJIMA ML10N-KJC

・照射ライン精度:10mで±0.61mm以内
・到達点距離精度:10mで±1mm以内
・左右通り精度:20mで±2mm(10mで±1.5mm)
・直角精度:90°±(2mm/10m)
・鉛直点精度:5mで±1mm(3mで±0.75mm)
・ライン幅:10mで約3mm
・自動補正範囲:±2°(範囲外はレーザーライン消灯)

オートレベル SOKKIA B40

・倍率:24x
・分解力:0.2mm @ 10m
・自動補正範囲:±15′
・対物有効径:32mm
・視野:1°25′(2.5m/100m)
・1km往復標準偏差:2.0mm

レーザー墨出し器+オートレベル

(上流側Q磁石)

(下流側Q磁石)

水平方向&鉛直方向軸周りの回転角の調整

下流側

上流側

4. 下側HOM導波管ロード取付

5. ビームパイプ連結・合体

上下流の溝付ビームパイプ連結後、 最終アライメント

	充空洞】鉛 の	る) 測 定 結	位置(レ 果	ベル)
<リング内側>	9	1	1	12
初期値	0.8 mm 🗸	0.4 mm ↓	0.2 mm ↓	0.4 mm ↓
リング内側2カ所0.2mm个	• 0.3 mm↓	0.1 mm↓	0.1 mm↓	0.2 mm ↓
リング内側2カ所0.1mm个	0.0 mm	0.1 mm 个	0.2 mm 个	0.2 mm ↓
リング内・下流:0.1mm个 リング外・上流:0.1mm↓	0.2 mm↓	0.1 mm 个	0.2 mm 个	0.1 mm ↓
<リング外側>	9	1	1	12
初期値	0.3 mm ↓	0.0 mm	0.0 mm	0.0 mm
リング内側2カ所0.2mm个	0.0 mm	0.0 mm	0.0 mm	0.0 mm
リング内側2カ所0.1mm个	~ 0.3 mm 个	0.2 mm ↑	0.1 mm 个	0.2 mm ↓
リング内・下流:0.1mm个 リング外・上流:0.1mm↓	0.1 mm ↑	0.1 mm ↑	0.0 mm	0.1 mm↓ 45

【下流空洞】水平方向位置の測定結果

<上側>	13	1	15	16
初期値	0.2 mm(外)	1.0 mm(外)	1.2 mm(外)	1.5 mm(外)
鉛直方向軸周り回転 &水平方向微調整	0.2 mm (内)	0.0 mm	0.2 mm(内)	0.3 mm(内)

		引鉛直フ	方向位置	量の測定	名相果
	<リング内側>	1	2	3	4
	初期值	0.3 mm ↓	0.1 mm ↓	0.1 mm ↓	0.3 mm ↓
	リング外側2カ所0.5mm个	0.0	0.0	0.0	0.2 mm ↓
	<u>リング外側2カ所0.2mm</u> 个	0.3 mm 🗸	0.1 mm ↑	0.1 mm ↑	0.0
1	<リング外側>	1	2	3	
			Ľ)		
	初期値	0.6 mm ↓	0.5 mm ↓	0.8 mm 🗸	0.8 mm ↓
	リング外側2カ所0.5mm个	0.2 mm ↓	0.1 mm ↓	0.1 mm ↓	0.4 mm ↓
	リング外側2カ所0.2mm个	0.1 mm 🗸	0.1 mm 个	0.1 mm 个	0.2 mm ↓

【上流空洞】水平方向位置の測定結果

 $0.2 \, \text{mm}(外)$

0.0

0.2 mm(内)

水平方向微調整

0.0

3844 mm

(Ra

中央ダミーパイプの接続

中央ダミーパイプの連結部は、 4本を除いて、<u>ダブルナット</u>で固定 (応力回避个)

フランジ間距離の測定

RFフィンガーのコンタクト範囲(±0.9 mm)内

真空リーク試験

| 一晩真空引き後 ● 空洞内圧力:2e-4 Pa →

■ 真空リーク試験(2016-11-17 AM)
● 1.7e-10 Pa m^3 /sec のバックグランドでリーク検出無し

真空リークも無かったので、更なるアライメントは行わなかった。

6. 合体後の空洞位置測定

使用機器: FARO Laser Tracker ION

F 3次元測定器 FARO Laser T... 🗡 🕇 🕂

i www.faro.com/ja-jp/products/metrology/faro-laser-tracker/overview

C Q 検索

FARO Laser Tracker ION

FARO Laser Tracker ION

インライン測定、高速ダイナミック測定、機械の高精度キャリブレーションな ど、最高精度が必要となる場面において、FARO Laser Tracker IONは最 先端の干渉計(IFM)ベースの測定システムであり、高精度、広範囲測定 を可能にします。

測定範囲:110m (361ft)(直径)

精度:0.015mm (0.0006in.)*
 *角度測定@2m

ビーム軸の再定義

RF区間上下流の(ターゲット座で測った)

空洞測定点

(上面とリング内側(副通路側)側面のみ測定)

(个ねじ切り加工後)

(个購入時)

<u>基準面</u>からの150ダクト円中心までの距離

	DR空洞	司1号機	DR空洞	DR空洞2号機	
	上流側	下流側	上流側	下流側	度
上面	244.980 + 0.007 -0.006	244.987 +0.034 -0.024	244.926 +0.013 -0.023	245.036 +0.010 -0.008	245± 0.1mm
側面 (RF入 力側)	149.996 +0.002 -0.003	149.915 +0.028 -0.020	149.955 +0.003 -0.002	149.975 +0.007 -0.006	150± 0.1mm

✓ 表示値は3回の測定の平均値

一度に全ての測定点を見通せないので、2回に分けて測定

上流空洞(2号機)

下流空洞(1号機)

Q磁石 (下流側)

ビームポート・フランジにおけるФ150ダクト中心のビーム軸からのずれ

←小さいチェーン ブロックを使用

-スリングで導波管を巻いて、吊り上げた。⁶¹

まとめ

- ■省スペース構造をもつDR用常伝導加速構造をDRトンネ ル/RF区間に据付完了
 - 事前のフランジ位置計測により、コンポーネントの最適な組み 合わせ・位置を決定
 - 可搬型CMM(据付前) + レーザートラッカー(据付後)を使った精密据付位置確認

→

日標据付精度(直角方向0.3mm)をほぼ達成!

■本加速構造、及び、据付方法は、任意の長さの加速構造に適用可能

