極短周期アンジュレータの設置に最適化した 小型電子蓄積リングの設計

DESIGN STUDY OF SMALL ELECTRON STORAGE RING FOR INSTALLATION OF VERY SHORT PERIOD UNDULATORS

大熊春夫^{A), B)}, 山本 樹^{C), D)}

Haruo Ohkuma ^{A), B)}, Shigeru Yamamoto ^{C), D)}

^{A)}高輝度光科学研究センター Japan Synchrotron Radiation Research Center (JASRI) ^{B)} あいちシンクロトロン光センター Aichi Synchrotron Radiation Center

^{C)} 高エネルギー加速器研究機構、放射光 Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, KEK ^{D)}総研大、物質構造科学 Department of Materials Structure Science, SOKENDAI (The Graduate University for Advanced Studies)

1. 目的とリングの設計条件 2.14セルラティスの概要 3. 電磁石について •四極電磁石 ·六極電磁石 ·Combined偏向電磁石 4. ダイナミックアパチャー、チューン、クロマティシティ 5.ビーム寿命の見積り ·Touschek寿命 ・ガス散乱寿命 6. アンジュレータ スペクトル 7.まとめ

<u>目的</u>

アンジュレータビームラインを主体とした低エネルギー小型リングの検討

極短周期アンジュレータを数多く設置する

極短周期アンジュレータの特長

周期長 2-6 mm → L=0.7 m で周期数 350-115

十分な磁場強度を得るためにGap = 2 mm以下とする必要がある

直線部の垂直ベータトロン関数β、を小さくする必要がある

・ここで提案する放射光源が実現できれば、大幅な小型化および低コスト化につながる

<u>設計条件</u>

(1) 電子ビームエネルギー1.5 GeV

(周期長2 mmのIDで基本波として約10keVが実現できる)

(2) 周長は70 m以下

- (3) 極短周期アンジュレータが10台以上設置
- (4) 直線部の長さは0.8 m以上
- (5) 実効エミッタンスは40 nm·rad 以下
- (6) ギャップ2 mm以下を実現する

ラティス(リング全体)

<u>パラメータ</u>

Energy Circumference Natural Emittance **Effective Emittance Momentum Compaction Factor** Betatron Tune (v_x , v_y) Natural Chromaticity (ξ_x , ξ_v) **Energy Spread RF Frequency** Harmonic Number **Radiation Loss Damping Partition Number**

Damping Time

1.5 GeV 60.12 m 23.9 nm.rad $\varepsilon_{eff} = \varepsilon_{1} \left| 1 + \frac{(\eta_{x} \sigma_{\delta})^{2}}{\beta \varepsilon} \right|$ 35.7 nm.rad 0.006970 (5.9061, 5.5158) (-11.8, -28.0)0.118 % 498.66 MHz $100 = 2^2 \times 5^2$ 335.0 keV/turn J_x 1.217 J_v 1.000 J₅ 1.783 t_x 1.474 msec t_v 1.794 msec 1.006 msec

<u>パラメータ(続き)</u>		
低 β, 直線部	L	1.0 m
- ,	β _x	8.478 m
	β_v^{finite}	0.243 m
	η _x	0.423 m
上 古	1	25 m
及恒终时	L B	2.3 m 8 200 m
	Ρ _x ρ center	6 052 m
	μ _y contor	0.052 III 0.240 m
	η _x	0.319 M
BM	L	0.6 m
	B	3.743 T
	B'	-7.490 T/m
QF	1	0.18 m
ά.	Е В'	+21.560 T/m
		0.40
QD	L	0.18 m
	B'	-9.376 T/m

<u>ユニットセルの電磁石配置</u>

			þ [m]	ם [ו]
QF	+4.30904927	+21.56016181		
SF				
QD	-1.87384726	-9.37572249		
SD				
BM	1.49686411	-7.48950184	1.33690152	3.7425803963
SD				
QD	-1.87384726	-9.37572249		
SF				
QF	+4.30904927	+21.56016181		
-	QF SF QD SD BM SD QD SF QF	QF+4.30904927SF	QF+4.30904927+21.56016181SF	QF +4.30904927 +21.56016181 SF

<u>セル長: 4.08m</u>

長直線セルの電磁石配置

L[m]		Β'/[Β ρ] [m -²]	B' [T/m]	ρ [m]	B [T]
1.25					
0.18	QL1	+3.87156740	+19.37123815		
0.16					
0.12	SF				
0.16					
0.18	QL2	-0.21579684	-1.07973117		
0.16					
0.12	SD				
0.16					
0.60	BM	-1.49686411	-7.48950184	1.33690152	3.7425803963
0.16					
0.12	SD				
0.16					
0.18	QL3	-0.85137269	-4.25981042		
0.16					
0.12	SF				
0.16					
0.18	QL4	+4.11198541	+20.57416039		
0.50					

<u>セル長: 4.83 m</u>

<u>六極の強さ(典型値)</u>

リング全体のクロマティシティが (ξ_x, ξ_y) = (+1,+1) となるように SF, SD を励磁。 ハーモニック6極は設置していない。2ファミリーのみ。

リング全周で6極の励磁パターンを最適化すれば、より広いダイナミックアパーチャーが得られる可能性もあるが、検討はしていない。

SF	L[m]	0.12	
	B"L/[Bρ][m ⁻³]	+4.718	
	B" /[Βρ][m ⁻³]	+39.32	
	B" [T/m ²]	+196.72	

Combined Bending Magnet

必要な磁場勾配(QD成分)を発生させるための 磁極断面形状を計算 ポール間ギャップは82mm

E = 1.5 GeV B₀ = 3.7426 T B' = -7.4895 T/m B ρ = 5.0035 Tm B'/(B ρ) = -1.4969 m⁻² r₀ = 1.3369 m n = -2.6754 y₀ = 41.0 mm を仮定(あいちSRの超伝導BMと同じ)

<u>ダイナミックアパーチャー</u>

エラー無しリングのダイナミックアパーチャーを計算(入射直線部中心) 右側の図は、y=0として計算した水平方向位相空間(ポアンカレマップ)。

振幅依存チューンシフト

エラー無しリングでの、ベータトロンチューンの振幅依存性を下図に示す。

<u>クロマティシティ</u>

エラー無しリングでの、ベータトロンチューンのエネルギー依存性、すなわち(非 線形)クロマティシティを計算した結果を下図に示す

チューンの設定値を妥当な値にすれば、エラーを考慮しても<u>+</u>5% 程度の Momentum Acceptance は期待できると思われる。ただし、セル数を増やすほ ど、クロマティシティの2次の項が大きくなり(特に垂直方向)、不利な方向に動く

ビーム寿命の見積り

(1) Touschek ビーム寿命と量子ビーム寿命

(IBS効果は考慮していない)

仮定したパラメータ

$$\frac{1}{\tau_{Touschek}} = \left\langle \frac{Nr_0^2 c}{8\pi\sigma_x \sigma_y \sigma_s} \frac{1}{\gamma^2} \frac{1}{\delta_m^3} D(\xi) \right\rangle$$
$$\tau_{quantum} = \frac{1}{2} \tau_s \frac{e^X}{X} \qquad X \equiv \frac{\left(\frac{\Delta E_{\max}}{E}\right)^2}{2\sigma_\delta^2}$$

蓄積電流: 300 mA、Full-Filling、バンチ電流=300 mA/(Harmonic Number) x-yカップリング: 0.5 %、Momentum Acceptance: ±5 %

- δ_m は momentum acceptance で、場所によらず一定とした
- バンチ長は zero-current limit の値を用いた
- ・ Intra-Beam Scattering の効果は無視

<u>(2) ガス散乱寿命</u>

$$\frac{\textbf{M\"oller}\textbf{B}\textbf{L}}{\tau_{M}} = cN\sum_{i} Z_{i}\sigma_{M}$$

$$\sigma_{M} = Max \left\{ \frac{2\pi r_{e}^{2}}{\gamma} \frac{1}{\left(\frac{\Delta R}{P}\right)_{c}}, \frac{4\pi r_{e}^{2}}{\gamma^{2}} \frac{1}{\theta_{c}^{2}} \right\}$$

<u>Rutherford散乱</u>

$$\frac{1}{\tau_{R}} = c N \sum_{i} \sigma_{R}$$
$$\sigma_{R} = \frac{4\pi Z_{i}^{2} r_{e}^{2}}{\gamma^{2}} \frac{1}{\theta_{c}^{2}}$$

<u>制動放射</u>

$$\frac{1}{\tau_B} = cN\sum_i \sigma_B$$

$$\sigma_B = 4\alpha r_e^2 Z_i (Z_i + 1) \left\{ \frac{4}{3} \ln \frac{1}{\left(\frac{\Delta}{P}\right)_c} - \frac{5}{6} \right\} \ln \left[183 \cdot Z_i^{-\frac{1}{3}} \right]$$

$$\frac{1}{\tau_G} = \frac{1}{\tau_M} + \frac{1}{\tau_R} + \frac{1}{\tau_B}$$

<u>H₂ : CO = 80 % : 20 % を仮定</u> <u>Rutherford散乱の寄与が大きい</u>

<u>アンジュレータスペクトル</u>

Brilliance of Very Short Period Undulators on the Model Storage Ring

周期長6mm : gap=1.5mm(B=4660G), gap=2mm(B=3630G) 周期長4mm : gap=1.5mm(B=3195G), gap=2mm(B=2165G) 周期長2mm : gap=1.5mm(B=985G)

<u>まとめ</u>

- (1) 開発を進めてきた狭ギャップ極短周期アンジュレータが蓄積リング光源として十分 な性能を持っていること、そして蓄積リングと共存できる事を示す事が出来た
- (2) L=0.7の極短周期アンジュレータ12台が設置できる周長60mの蓄積リングのラティ ス設計を行った
- (3) エミッタンスは35.7 nm.radを得る事が出来た
- (4) ダイナミックアパーチャーは十分である
- (5) ビーム寿命の評価を行い、ギャップ1.5 mmでも問題がないことを確認した
- (6) アンジュレータスペクトルは期待通りであると考えている
- (7) チューンの調整が必要。垂直チューンは少し上げた方が良いと考えている。振幅 依存チューンの動き(ν_y vs. ξ)から、ξが増えていくと ν_y が半整数を横切ってしまう。 今のままでは、エラーを入れた時にダイナミックアパーチャーが縮むと考えられる

<u>今後の展望</u>

- ・直線部の長さとID長および最小ギャップの最適化
- ・IBS 効果の影響評価を行う
- ・狭ギャップIDが入った場合のビームロスの詳細な評価。どこでロスさせるか
- ・詳細な検討が不足している箇所があるので、更に検討と最適化を進める

謝辞

- ・ラティスの計算は高輝度光科学研究センターの早乙女氏が行った
- ・本研究はJSPS 科研費 26246044 の助成を受けたものである