PASJ2014-SUP105

SuperKEKB 入射器の高周波モニターシステム

RF MONITOR SYSTEM FOR SuperKEKB INJECTOR LINAC

片桐 広明[#], 荒川 大, チュウ フェン, 松本 利広, 三浦 孝子, 道園 真一郎, 矢野 喜治

Hiroaki Katagiri[#], Dai Arakawa, Feng Qiu, Toshihiro Matsumoto, Takako Miura, Shinichiro Michizono, Yoshiharu Yano High Energy Accelerator Research Organization (KEK)

Abstract

New RF monitor system for SuperKEKB project has been developed at the KEK injector linac. The RF monitor unit which consists of analog I/Q demodulator, ADC/DAC board and FPGA board achieved 50Hz data acquisition and beam mode identification. On the prototype RF monitor, amplitude and phase measurement precision has been achieved 0.1% rms and 0.1 deg. rms. Thirty five RF monitors will be installed in Sept. 2014.

1. はじめに

高エネルギー加速器研究機構の電子陽電子入射器 では SuperKEKB 計画^[1]で必要とされる高周波源の 安定度を達成し、且つ複数リングへの同時入射運転 ^[2]にも対応するため、新しい高周波モニタシステム の導入を進めている。VXI をベースにした旧システ ムに替わり導入を計画している新システムは、アナ ログ IQ 検出器を採用した RF モニタユニット^[3]を中 心に、EPICS IOC となるラックマウントサーバー、 クロック分配系などで構成される。RF モニタユ ニットは、これまでに改良を重ねた試作機を用いて 高周波測定安定度の評価、同時入射運転に対応する ための FPGA 組み込み回路の開発を行ってきた。機 能・操作性を向上させたモニタユニット量産機は計 70 台の導入を計画しており、2014 年 9 月から 35 台 の運用を開始する予定である。現在、高周波計測精 度を高めるため IQ 検出器の補正テーブルの作成を 進めている。補正プロセスは当面はサーバー計算機 上で行うがモニタユニット全数を導入する際には FPGA に組み込むことを考えている。

2. システムの構成

Figure 1 に RF モニタシステムの構成を示す。中 心となるのは、アナログ IQ 検出器を採用したモニ タユニットである。5 チャンネルの高周波入力信号 を同時に計測することが可能である。計測データは 当面は IQ 成分のまま EPICS の IOC となるラックマ ウント型サーバー計算機に転送し、振幅・位相への 変換と補正を施された後、入射器運転に提供される。 モニタ信号はパワースプリッタで分割して同軸ス イッチにも入力され、パワーメータで測定すること もできる。これらの機器は旧システムからの流用で ある。

RF モニタユニットは 2014 年 9 月に 35 台を導入 する予定で、まず旧システムの VXI メインフレー ムと置き換える形で設置し、1 台のユニットで 2 台 の大電力高周波源の計測を行う(Figure 1a)。さらに 2014 年度中に 35 台を追加する。モニタユニット計 70 台導入時には、およそ 60 台ある大電力高周波源 全数において、SLED 出力進行波及び反射波、クラ イストロン出力進行波、加速管出力信号、リファレ ンス信号の計測が可能となる(Figure 1b)。

Figure 2 はシステムを収納する 19 インチラックで、 電子陽電子入射器クライストロンギャラリーの全長 に渡りほぼ等間隔で 30 台設置されている。レイア ウトは上から、LAN スイッチ及びメディアコン バータ、RF 同軸スイッチ、RF モニタユニット、パ ワーメータ、NIM-BIN 電源、ラックマウントサー バーとなる。

(a) Sept. 2014 ~

(b) Apr. 2015 ~

Figure 1: Block diagram of RF monitor system.

[#] hiroaki.katagiri@kek.jp

PASJ2014-SUP105

Figure 2: Layout of RF monitor rack.

3. RF モニタユニット

Figure 3 は RF モニタユニット量産機のブロック ダイアグラムである。アナログ IQ 検出器、ADC ボード、FPGA ボード、ユーザインタフェース等で 構成される。試作機では 4 チャンネルであった RF 入力を5 チャンネルに変更した。さらにユーザイン タフェース用 CPU を H8 マイコンから、Linux がプ リインストールされた組み込み向け CPU プラット ホームである Armadillo^[4]に変更した。これに波形表 示可能な液晶ディスプレイを組み合わせ、機能と操 作性を向上させている。IQ 検出器及び ADC の仕様、 FPGA ボードに Xilinx の ML605 ボードを使用する 点は変わらない。Figure 4 左が試作機改良型 RF モ ニタユニット内部の様子である。写真左上に ML605 ボード、下に ADC ボードがレイアウトされ ている。IQ 検出器はケース下層に収納されている。 Figure 4 右がユーザインタフェースの表示例である。 ここでは、SLED 駆動用の RF 信号を模擬した信号 を入力しており、赤表示されているのが振幅波形、 水色が位相波形である。パルス幅 4µS で、後半 1 μS は位相反転している様子がわかる。

FPGA 組み込み回路では、イーサネットインタ フェースである SiTCP^[5]に 4 ライセンス分の mpc ファイルを実装して MAC アドレス・IP アドレスを 選択できるように変更した。これにより、モニタユ ニット 70 台導入時は1台のサーバーに最大4台ま でモニタユニットを接続することが可能となった。 ビームモードを識別するためのイベント信号を受信 するイベントレーシーバ回路は、これまでに開発し たものを踏襲している。Figure 5 はサーバー計算機 が取得したデータの表示例である。SiTCP を介して 転送されてくるデータは現状では ADC がサンプリ ングした生データであり、IQ 成分から振幅・位相 への変換はサーバー上で行っている。図では SLED 出力進行波の振幅波形を表示している。プルダウン メニューから任意のビームモードを指定し、対応す るデータを選択することができる。

Figure 3: Block diagram of RF monitor unit.

Figure 4: RF monitor unit and user interface.

Figure 5 : Data viewer.

Table 1: Comparison to the previous monitor system

	PREVIOUS SYSTEM	NEW SYSTEM
Specification of ADC	8bit, Max 2GHz	14bit, 100/114MHz
Phase measurement range	<40deg.	360deg.
Number of RF input channels	8CH (selective)	5CH(simultane -ous sampling)
50Hz data acquisition	NG(25Hz)	ОК
Identification of the beam modes	NG	OK
Amplitude/Phase precision	0.15%rms, 0.2deg. rms	0.1%rms, 0.1deg. rms

PASJ2014-SUP105

Table 1 は VXI をベースとした旧モニタシステム ^[6]と性能・仕様を比較したものである。旧システム では 0.1 度/10mV の出力特性を持つ位相検出器で、 実効的な分解能高めるためデジタイザで DC オフ セット付き計測を行っており、位相読み取り範囲は 約 40 度に制限されている。同時入射運転でパルス 毎に位相が変わる際に対応できない要因にもなって いた。また、50Hz データ取得やビームモード識別 のためのハードウェア/ソフトウェアの変更も困難 な状況であった。

4. IQ 検出器補正

IQ 検出器が理想的な特性である場合、入力 RF の 位相を変化させながら I 及び Q 出力を直行座標上に プロットすれば原点を中心とした真円を描き、入力 レベルを変化させて繰り返せば同心円となるはずで ある。しかし実際には円の歪、中心点の原点からの ズレがあり、さらに ADC のオフセット等も加わる。 測定の精度をより高めるために、ADC で取り込ん だ値を補正するためのテーブルを用意することにし た。

テーブルの作成は、ネットワークアナライザによ る測定値を基準とし、ADC 出力値との差分を求め る方法をとった。IQ 平面上に 400×400 のマトリク スを定義して、各点での補正値を Z 軸方向に 3 次元 プロットしたものが Figure 6 である。左が I 成分、 右が Q 成分の補正値となる。

Figure 6: Example of IQ correction table.

次に作成した補正テーブルの効果を検証した。 Figure 7 が対象となる IQ 検出器単体をネットワーク アナライザで測定し入力 RF 位相対振幅換算値の誤 差をプロットしたものである。入力レベルを5段階 に変えては測定しているが、レベル依存性は小さく、 同じ傾向を示している。Figure 8 は IQ 検出器をモニ タユニットに組み込んだ状態で測定し、同じく位相 対振幅誤差をプロットしたもので、縦軸は ADC の 読み値から算出した誤差を%表示している。青のグ ラフが補正無し、緑が補正テーブルを適用した状態 である。Figure 7 ではピークツーピークで 0.04dB 程 度の振幅誤差がみられ、これは 0.46%に相当する。 Figure 8 の補正無しの状態と比較すると、測定系が 異なるため位相のゼロ点は違っているがグラフの形 状には似たような傾向が見られ、誤差のピークツー ピークも近い値と判断できる。これらの検証から、 位相検出器の持つ 0.5%程度の非線形性が概ね 0.1% ほどに補正されると期待している。

Figure 7: Characteristic of an IQ demodulator.

Figure 8: Correction of an IQ demodulator.

5. まとめ

新しい高周波モニタシステムは RF モニタユニッ トのハードウェアがほぼ完成し、現場にインストー ルする段階に差し掛かっている。2014 年 9 月の 35 台のモニタユニット運用開始後はファームウェア/ ソフトウェアの改良を進めながら、電子陽電子入射 器のより安定したビーム運転に寄与するようなシス テム運用形態の確立を目指す。

参考文献

- [1] H. Koiso, et al., "Construction Status of the SuperKEKB Rings", in these proceedings
- [2] M. Sato, et al., "Present status of SuperKEKB injector linac commissioning", in these proceedings
- [3] H. Katagiri, et al., "Rf monitor unit for simultaneous injection" Proceedings 9th Annual Meeting of Particle Accelerator Society of Japan, Osaka, August 8-11, 2012
- [4] http://armadillo.atmark-techno.com/beginners/armadillo
- [5] http://sitcp.bbtech.co.jp/xcl/html/
- [6] H. Katagiri, et al., "RF Monitoring System in the Injector Linac", Proceedings of the 7th international conference on accelerator and large experimental physics control systems,ICALEPCS'99, Trieste, Italy, 1999, pp. 69-71