PASJ2014-SUP047

ILC に向けた超伝導加速空洞の開発状況

SUPERCONDUCTING CAVITY R&D FOR ILC AT MHI

原博史, 仙入克也, 井上典亮, 柳澤剛, 金岡耕平

Hiroshi Hara, Katsuya Sennyu, Fumiaki Inoue, Takeshi Yanagisawa, Kohei Kanaoka, Mitsubishi Heavy Industries, Ltd, Mihara, 729-0393, Japan

Abstract

MHI has so far manufactured 9-cell superconducting cavity for STF (Superconducting Test Facility), and ERL (Energy Recovery Linac) with KEK. MHI has developed the mass production construction method of superconducting cavity for ILC in parallel. This report provides status of development.

1. はじめに

次世代加速器の国際リニアコライダー(ILC)への 適用を目指し,KEK では超伝導 RF 試験施設(STF) が稼働し,超伝導加速技術の開発が行われている。

MHIでは、その基幹技術として必要とされる電子 を高い電場で加速する高周波加速装置として、超伝 導加速空洞を供給している。これまで STF 型 9 セ ル超伝導空洞として 26 台の納入実績がある(Table 1)。 これらの内、#12 号機以降の空洞は高圧ガス設備と して稼働しており、その平均加速勾配は 35.2MV/m であり、ILC の設計加速勾配 35MV/m を達成して いる(Figure 1)。

一方で社内開発にて生産性向上の為の新しい技術 を開発しており、これまで3台のILC R&D 超伝導 加速空洞を製造してきた。今回、最新工法を用いて 新規空洞(MHI-D 号機)を完成させたので、ここに報 告する。

Project	Customer	Production	Cell	Quantity	Remarks	
		year	number	Quantity		
STF	KEK	2005-2014	9	26	MHI-1 to MHI-26	
		2013-	9	4	MHI-27 to MHI-30 (under fabrication)	
ERL		2009-2010	2	3	For injector of KEK c-ERL project	
		2010-2011	9	2	For main ring of KEK c-ERL project	
ILC R&D	MHI	2009	9	1	Deep drawing for HOM cup	
					LBW for stiffener and flange	
		2010	2	1	[MHI-B] Seamless dumbbell, Auto buffing	
		2012	9	1	LBW for baseplate	
					Welding all equator line in succession	
		2014	9	1	Nb Gr-2 flange	
					[MHFD] Welding all equator line in succession (4 cavities <1 batch)	

Table 1: Production List

Figure 1: Summary of MAX Accelerating Gradient.

2. MHI-D 号機の開発

2.1 アイリス部溶接ビードの改善

超伝導空洞の性能劣化の原因の一つに、突起等に 起因する空洞内面での電界放出(フィールドエミッ ション)によるエネルギーロスが挙げられる。空洞 のくびれ部分であるアイリス部は、電界が集中する 為、電界放出が発生しやすく、特に平滑度が求めら れる。ILC R&D 機として製造した MHI-C 号機の性 能試験において、アイリス部の溶接ビードを平滑研 磨処理することでフィールドエミッションによる X 線発生量が低減することが確認されている(Figure 2)。

Figure 2: Comparison of generating X-rays.

PASJ2014-SUP047

そこで今回,アイリス部の溶接板厚の最適化,溶 接条件の見直しを行うことで,平滑研磨が不要とな る溶接ビードが得られた。今後の性能測定にて,発 生 X 線の低減が期待される。

(a) old

(b) new Figure 3: Weld bead of iris.

2.2 Nb Gr-2 フランジの採用

金属 O-リングを使用して真空シールを行う場合, フランジ材には,これまでニオブチタンが使用され ているが,今回,フランジ材としてニオブチタンに 代えてニオブを採用することとした。これにより, 部品点数,及び溶接線が削減できる(Figure 4)。

Figure 4: Combination of pick up port and flange.

材料の候補として, 独ヘレウス社より, 以下3種 類の材料を購入した。

- ASTM Gr-2 Nb(表層硬化処理品)
- ASTM Gr-2 Nb (硬化処理なし)
- RRR300 Nb (表層硬化処理品)

Table 2: Chemical Composition (wt %)

		Spec		
		RRR300	ASTM Gr-2	
		(purchased from Japan)	(purchased from Heraeus)	
	0	0.015	0.025	
	Ν	0.01	0.01	
	С	0.01	0.01	
	Н	0.002	0.0015	
	Та	0.15	0.3	
	Si	0.005	0.005	
Element	Fe	0.005	0.01	
Element	Zr	0.01	0.02	
	W	0.02	0.05	
	Ti	0.005	0.03	
	Ni	0.005	0.005	
	Mo	0.005	0.02	
	Hf	_	0.02	
	Nb	99.85	remainder	

購入した材料からフランジテストピース(Figure 5) を製作し,液体窒素浸漬によるヒートショックを与 えた後に He リークテストにより漏れ試験を行った 結果,3 種類の材料共に気密性に問題は認められな かった。また,空洞に対して行われるものと同じ熱 処理,及び液体ヘリウム浸漬によるヒートショック を与えた後も,結果に変化は無かった。このことか ら,入手性を考慮し,ASTM Gr-2 Nb(硬化処理な し)に決定し,試作空洞の材料に適用した。今後, 新材料が空洞性能へ及ぼす影響を確認し,実機への 適用を提案していく。

Figure 5: Test flange.

Figure 6: Airtight test.

Proceedings of the 11th Annual Meeting of Particle Accelerator Society of Japan August 9-11, 2014, Aomori, Japan

PASJ2014-SUP047

2.3 空洞4台1バッチ溶接

MHIでは、空洞を縦置きにして溶接するに十分な 高さの溶接室を持つ電子ビーム溶接機を保有してい る。空洞部品を縦型治具に装着して溶接室に入れる ことで、一度の真空排気で9セルの赤道部全ての電 子ビーム接合を行うことが可能である。これまで、 MHI-C号機(ILC R&D 空洞)、MHI-23~26号機の 溶接組立を施工した実績があり、この内、MHI-25 ~26号機は、同時に溶接室に入れて溶接組立を 行っている。今回、4台の空洞を同時に溶接室に入 れ、電子ビーム接合を完了し、更なる生産性の向上 に成功した(Figure 7)。

1 cavity/batch (a) old

Figure 7: Welding of cavity.

3. まとめ

MHI では, KEK 向け 9 セル超伝導空洞の製造に 取り組むと共に, ILC に向けた生産性向上の開発を 続けてきた。今回,従来工法に加えて,アイリス部 溶接ビードの改善,ピックアップポートフランジの 設計変更,空洞4台同時溶接技術を織り込んだ ILC R&D 空洞を完成させた。今後の性能試験を通じて 開発成果を評価していく。

謝辞

本稿を作成するに当たり KEK の加古永治氏,山 本康史氏, 宍戸寿郎氏をはじめ多くの方々にご協力 を頂きました。ここに感謝の意を表します。

参考文献

- T.Shishido, et al., "Achievement of ILC Specification in the STF 9-cell SC Cavities at KEK", 8th Annual Meeting of Particle Accelerator Society of Japan, Tsukuba, Japan, (2011), TUPS127.
- [2] K.Sennyu, et al., "Industrialization of ILC from a view point of industry", 4th IPAC13, Shanghai, China, (2013), WEIB203.
- [3] T.Yanagisawa, et al. "Status of the Superconducting Cavity Development for ILC", SRF2013, Paris, France, (2013), MOP055.
- [4] R.Ueki, et al., "Vertical test result of 9-cell SC cavities forSTF2-CM2a cryomodule",本学会, SUP045.
- [5] T.Shishido, et al., "Construction of STF2 Cryomodule consisting of Twelve 1.3 GHz 9-cell SC Cavities. ", 本学 会, MOOL12.