PASJ2014-SUP037

超伝導加速空洞の欠陥検査システム XT-map の開発

DEVELOPMENT OF SC CAVITY INSPECTION SYSTEM, XT-MAP

頓宮拓^{#, A)}, 岩下芳久^{A)}, 早野仁司^{B)}, 山本康史^{B)}

Hiromu Tongu^{#, A)}, Yoshihisa Iwashita^{A)}, Hitoshi Hayano^{B)}, Yasuchika Yamamoto^{B)}

^{A)} Institute for Chemical Research Kyoto University (ICR)

^{B)} High Energy Accelerator Research Organization (KEK)

Abstract

Our XT-map system under development in collaboration between Kyoto University and KEK is a combined system of T-map and X-map. Although sensitivity of the adopted X-map and T-map sensors are less than those used at other laboratories because of the small sensor area, both the sensors have sufficient performance for our XT-map system. Test circuits using these components proved to have enough performances in the vertical test. Now the Ver.4 circuit films that improved troubles of the Ver.3 are producing.

1. はじめに

超伝導空洞は加速空洞の内壁表面に存在する微少 欠陥(数+μm)や汚染による発熱、電界放出電子など が原因でクエンチや加速効率の低下が起きることで 最大加速電圧勾配が制限される。具体的には溶接 ビードの表面及び内部欠陥、表面処理時の残留汚染 物である。

ILC 加速空洞の製作では常温での高解像度カメラ による加速管内表面の光学的観察[1]と局所研磨[2] が欠陥観察および欠陥除去の主流となっている。ま た、超伝導下での RF 入力による加速空洞性能試験

(縦測定)において空洞外表面の温度センサーによる発熱箇所探索(T-map)、X線放射量の測定による 電界放出場所の探索(X-map)が欠陥観察の予備検査 として行なわれている。高エネルギー加速器研究機 構(KEK)の ILC 加速空洞製作においても ILC 加速空 洞の欠陥試験を上記の観察及び探索手段を採用し欠 陥場所の特定を行なっている。

京都大学化学研究所では KEK との共同研究で加 速空洞の開発、製造において運用効率、位置分解能 に優れた T-map、X-mapの開発を行なっている。

2. XT-map

XT-map は ILC 9セル加速空洞の非破壊検査を想 定して研究開発を進めている。T-map と X-map を同 じ測定回路、同じセンサー基板上に配置した Mapping システムであり、以下のモチベーションで 開発を進めてきた。

- 高位置分解能(多点測定)
- 低運用コスト(極低温側への熱侵入低減)
- 高運用効率(被測定物への容易な実装)
- 安価な製作費(汎用の低価格電子部品の使用)

XT-map は縦測定において高分解能の発熱位置探 索を可能とするため、空胴の壁厚、熱伝導等を考慮 し、1点/cm²程度(1024 個/1セル)のセンサー 密度を設定している。 この超多点測定によるセンサー配線によって極低 温環境への熱流入や真空部品のコストアップが予想 されるため Figure 1、Figure 2 に示すように CMOS アナログマルチプレクサ及びシフトレジスタによる チャンネル切替え回路をクライオスタット内に設置 した。これにより測定室と極低温環境との入出力 ケーブルを劇的に減らし、熱侵入を大幅に減らすこ とが可能となった。

Figure 1: The double-leaf-shaped Flexible Printed Circuits films (polyimide film with several layers) for XT-map.

Figure 2: Block diagram of T-map system.

PASJ2014-SUP037

Figure 3: The sensitivities of RuO_2 resistors as functions of temperature. Values in brackets are the applied current values. Left: The resistances as functions of temperature for RK73B by KOA. Right: The resistance relative to the values at 4.2K (measured at 5µA₂).

極低温度測定において市販のセンサーの測温性能 は申し分ないが、非常に高価であり本研究のような 多点測定による温度分布計測に用いるのは難しい。 また、極低温を測定する安価な温度センサーとして 実績のあるアーレンブラッドレー社の炭素抵抗[3]が 多くの研究施設で利用されているが、この炭素抵抗 はすでに製造中止で入手は容易ではない。この炭素 抵抗に代わる温度センサーとして我々は小型で入手 容易な面実装タイプの酸化ルテニウムのチップ抵抗 を採用した。

酸化ルテニウム抵抗は初期調査で抵抗値が大きい ほうが感度は良いが、大きな抵抗値では時定数が大 きくなり立ち上がりの信号出力応答速度が悪化する ことがあきらかとなった。Figure 3 に抵抗値の違い による温度特性を示す。上記の温度特性、高密度実 装、コスト、入手性、空胴外壁への接触性等を考慮 し、1.6x0.8mm サイズの 10kΩ 酸化ルテニウムチッ プ抵抗(ROHM KTR03)を採用した[4]。

X-map 用のセンサーはこれまでフォトダイオード を主に 10 種類以上の素子を試してきた[5]。KEK で 採用され実績のある浜松ホトニクスの S1223-01 は 調査したセンサーの中では最も感度が良いがパッ ケージサイズが大きく面実装には向かない。超多点 実装の点から相対的な実測値性能とコスト、入手性 を考慮し、感度は S1223-01 の 1/4 程度であるが小型 フォトダイオード (OSRAM BPW34FS R18R)を採 用した。X 線センサーは各チャンネルに積分回路を 設けることで小型センサーの感度不足を補うことが できた。しかしながら OSRAM BPW34FS R18R は極 低温でパッケージが破壊する個体があるため、実装 前に液体 He によるフィルタリングが必要である。

また XT-map システムの運用において基板の着脱 を容易にするため、Figure 4 のようにポリイミド フィルムベースの短冊状フレキシブル基盤(PCB)に センサー等をマウントし、空胴外壁に設置する方法 を採用している。また、同じ基板上に T-map、Xmap センサーを配置して同時測定が可能であり、両 隣の基板と接続し、基板 16 枚で1セルを覆う設計

Figure 4: The Ver.3 double-leaf-shaped Flexible Printed Circuits films (polyimide film with several layers) for XT-map. And installation of test of XT-map assemblies (1/4 cell) for the quench detection at KEK.

となっている。結果、ILC 加速空胴のアイリス部ス ティフナーリング内側に設置する(スティフナーリ ングによる X 線の減衰を避けるため)StiffenerXmap (Figure 5) [5]を含め、XT-map システムは 25 本のケーブルで運用する(Figure 2)。センサーの 高密度化による測定位置精度の向上と容易に装備で きるデバイスにより空胴内表面の欠陥検査時間の短 縮が期待できる。

現状では T-map センサー1ch のサンプリング時間 は約 1msec、サンプリングレートは 1kHz(X セン サーは 2msec、500Hz)で1セル単位のアウトプット を計画しており、加速空胴の 1 スキャンは約 1sec である。

3. 製作と測定

3.1 XT-map 基板 (Ver.3) の測定結果

センサーの温度特性や耐久試験、縦測定における システムの運用テストは KEK STF にて行なってい る。昨年度に発熱箇所が特定された加速空胴の縦測 定があり、Figure 4 の XT-map 基板 (Ver.3)、4枚 (1セルの 1/4 エリアを覆う)を発熱が予測される場 所に設置し、クエンチ検出試験を行うことができた。 Figure 6 に動作テストでのクエンチ検出結果 (Tmap)を示す。事前の疑似発熱による測定でセン サーのハンダ割れによる不良チャンネルや、空胴外 壁への接触(熱的コンタクト)不足による感度不良

Figure 5: Stiffener X-map test circuits and its installation. The ribbon shaped FPC boards are installed under the stiffener ring.

Proceedings of the 11th Annual Meeting of Particle Accelerator Society of Japan August 9-11, 2014, Aomori, Japan

PASJ2014-SUP037

Figure 6: Typical measurement results of the quench detection test of XT-map during the vertical test. The circles are quench location previously observed by KEK T-map. The temperature rise time is estimated about 0.5sec, because the scan cycle is about 0.216sec.

センサーが多数存在したが、発熱位置の探索に十分 なアウトプットを得ることができた。一方、X-map システムは初期の実験では起きなかった液体 He に 浸かると出力信号が飽和するトラブルが発生した。 これはアンプ回路に用いた CD4069 CMOS インバー タのオフセット電圧が温度の影響を受け、出力が飽 和するためである。が実用入力電圧において低温ほ ど使用電流が大きくなる(実測で液体 He では室温比 で約2倍)傾向にあることが原因で常時回路に漏れ 電流が流れていると考えら

れる。後日、別途測定にて低温域での使用におい て正負電源電圧の調整を行なうことで適正なオフ セット電圧に設定し、問題なく X-map システムが 動作できることを確認した。

3.2 XT-map 基板 (Ver.4) の製作

Figure 7 に製作した XT-map 基板 (Ver.4) を示す。 Ver.3 の問題点は「空胴外壁への接職 (熱的コンタ クト)不足」、「極低温でのアンプ回路のオフセッ ト電圧の変動」である。Ver.4 では各 T-map セン サーにバネを設置し、空洞外壁へのセンサー独立で の接触圧を確保した。またアンプ回路への供給電圧 ラインを独立に設け、CD4069 CMOS インバータの 駆動電圧 (オフセット)の調整を可能とした。基板 形状の大幅な修正により、X-map センサー数を半数 に削減 (重要ではない赤道部周辺のセンサーを廃 止)することにしたが、X-map システムの主要は Stiffener X-map であり問題はない。

Figure 7: The Ver.4 XT-map assemblies (1/4 cell). It is comprised of the double-leaf-shaped Flexible Printed Circuits films (polyimide film with several layers), the phosphor bronze sheets with spring functions and a fixing device for SC-cavity.

4. まとめと今後の予定

クエンチ検出テストにおいて XT-map のシステム が有効であることを示すことができた。現在、1セ ル測定用(16枚)の Ver.4 XT-map 基板を製作して おり、これを用いた縦測定でのクエンチ検出テスト を計画中である。Figure 2 に示すように XT システ ムの信号出力は1セル単位で行なうため、このテス トが最終的な動作確認となる。

参考文献

- Y. Iwashita, Y. Tajima, H. Hayano, ., "Development of High Resolution Camera for Observations of Superconducting Cavities", Phys. Rev. ST Accel. Beams, 11, [093501-1]-[093501-6], 2008.
- [2] K. Watanabe, H. Hayano Y. Iwashita., "CAVITY INSPECTION AND REPAIR TECHNIQUES", Proc. SRF2011, 598-602, 2011.
- [3] Balle, Ch., Casas-Cubillos, J. et al, "Influence of Thermal Cycling on Cryogenics Thermometers" Advances in Cryogenic Engineering 45B, Plenum, 1999, pp. 1817.
- [4] H. Tongu, et al., "UPDATE ON SC CAVITY INSPECTION", Proc. LINAC10, 836-838, 2010.
- [5] H. Tongu, et al., "Development of X-ray detector system at irises of the superconducting cavities", Proc. of the 9th Annual Meeting of PARTICLE ACCELERATOR SOCIETY of JAPAN, 1146-1148, 2012.