将来光源加速器による新粒子の探索

FEASIBILITY OF NEW PARTICLE SEARCH AT FUTURE LIGHT SOURCE ACCELERATORS

本田洋介 *A)

Yosuke Honda* A)

^{A)}High Energy Accelerator Research Organization (KEK)

Abstract

Various types of accelerators are proposed as a future light source. Especially those design which can produce high peak power at high repetition rate utilizing energy recovery scheme are interesting also for searching a new particle which couples with photons. We estimated sensitivity of axion search with future XFEL-O, EUV-FEL, and LCSS- γ machines. It shows experiment at these machines can extend the parameter space. We also checked the feasibility of FEL output power assumed in this discussion.

1. はじめに

将来の光源加速器として、様々な方式の加速器が検討 されている。特に、高輝度高繰り返しの新しい光源とし て、X線領域のFEL発振器 (XFELO)、EUV リソグラ フィ用途のFEL(EUV-FEL)、レーザーコンプトンによる ガンマ線源 (ERL-LCSS) などが挙げられる。これらは、 基本的にはユーザー運転に使用されることになるが、こ れまでの光源に無い特徴をもっていることから、その他 の用途を検討することも興味深い。ここでは、並行して アクシオン探索実験に用いることを念頭に考察した。

アクシオンは、存在が期待されているが未発見の素 粒子で、2つの光子と相互作用するとされる。結合定数 gおよび質量 m_A が未知のパラメータである。1つの光 子を静磁場に置き換えて相互作用を考えると、磁場中で アクシオンが光子に変換する、あるいは、光子がアクシ オンに変換する、ことになる。現状では、太陽観測によ る実験 (Helioscope) が最も強い制限を与えている。一方 で、レーザーを用いた実験 (Light Shining through Walls) も行われている^[1]。これは、レーザーの光子を磁場中 でアクシオンに変換し、さらに、アクシオンを再び光子 に変換して検出しようとするものである。

既存の放射光蓄積リングでの実験は既に行われている^{[2][3]}。X線領域の高エネルギーの光子を用いることから、高質量側を探索することが出来る。ここでは、高強度の将来光源加速器を仮定し、どの程度の感度の向上が期待出来るかを議論する。

2. 測定のセットアップ

2.1 測定の原理

Fig.1 にセットアップの概念を示す。強磁場中で壁越 しに光子を検出する。光子は壁を直接は通過しないはず なので、まず、光子が磁場と相互作用してアクシオンに 変換されて壁を通過し、再び、アクシオンから光子に変 換した、ということになる。壁越しの光子を有意に検出 できれば良い。

アクシオンがエネルギーωの光子に、強さ B で長さ

Figure 1: LSW 実験のセットアップの概念図.

Lの磁場領域で、変換する確率 $P_{A\gamma}$ は、

$$P_{A\gamma} = \frac{1}{4}g^2 B^2 L^2 F(q, L)$$
 (1)

ここで、
$$F(q,L)$$
は、 $q=\omega-\sqrt{\omega^2-m_A}$ として、

$$F(q,L) = \left(\frac{\sin(qL/2)}{qL/2}\right)^2$$
(2)

である。LSW のセットアップでは、この確率が2回掛かる。入射する光子の個数を N_0 、検出される光子の個数を N_f とし、検出器の検出効率を η とする。結合定数gについて解いて、

$$g = \frac{2\eta}{BL\sqrt{F}} \left(\frac{N_f}{N_0}\right)^{1/4} \tag{3}$$

が得られる。どれだけ小さなgまで感度が到達するか、 ということであるから、積分磁場BLをできるだけ大き くするのが効果的である。ただし、Fの中にLが入っ ているので、Lで稼ごうとすると、 m_A の上限が低下し てしまう。 m_A の上限は、 ω/L でスケールするので、光 子エネルギーが高い程、高質量側に感度を持つことに なる。

2.2 検出のセットアップ

到達できる感度は、S/Nと統計で決まる。バックグラ ウンドは、検出器の熱雑音や、宇宙線などの無関係の起 源の信号によるものと考えられる。検出される光子は、 入力する光子と同じエネルギーで、タイミングも同期

^{*} yosuke@post.kek.jp

PASJ2014-SUP015

するはずである。エネルギーとタイミングの弁別によっ て、バックグラウンドを抑えることが出来る (Fig. 2)。 タイミングによる弁別が効果的であるためには、ビーム 強度のコントラストが重要である。ピーク強度が高く、 バンチ間隔は大きいのが望ましい。また、統計が当然重 要なので、平均フラックスも必要である。以上のことか ら、連続動作の FEL 加速器が最適であると考えられる。

Figure 2: エネルギーとタイミングの制限.

3. 光源の比較

Table 1 に、ここで仮定する光源の性能を示す。それ ぞれで得られる感度領域を比較する。測定セットアップ における磁場は、超伝導ダイポールを仮定し、10 T で 10 m のものが壁の両側にあるとした。

source	photon energy	repetition	flux
Laser 100kW	1 eV	CW	$10^{24}/s$
Storage-ring	10 keV	500 MHz	$10^{14}/s$
XFEL	10 keV	100 Hz	$10^{12}/s$
XFEL-O	10 keV	1 MHz	$10^{15}/s$
XFEL-O (intra cavity)	10 keV	1 MHz	$10^{16}/s$
EUV-FEL	100 eV	30 MHz	$10^{21}/s$
LCSS (γ)	2 MeV	100 MHz	$10^{12}/s$

Table 1: 仮定する光源

Fig. 3 は XFELO の場合、Fig. 4 は EUV-FEL の場合、 Fig. 5 は LCSS の場合、の感度領域である。フラックス が大きく統計を稼ぐ程、下方向に到達し、光子エネル ギーが高い程、右方向に到達する様子が分かる。

Figure 3: XFELO で得られる感度.

Fig. 6 に、これらの結果と、過去の実験結果、および 既存の光源で同様の評価をした場合との比較を示す。将

Figure 4: EUV-FEL で得られる感度.

Figure 5: LC ガンマ線源 (LCSS) で得られる感度.

来光源では、感度領域を拡大することができ、また、そ れぞれにおいて、相補的にパラメータ領域の異なる部分 を拡大出来る事が分かる。

Figure 6: 光源による感度領域の比較.

4. EUV-FEL のパワーの見積り

前節で計算した将来光源のうち、近い時期に実現し そうなものとして、EUV-FEL について簡単な見積りを 行った。

Proceedings of the 11th Annual Meeting of Particle Accelerator Society of Japan August 9-11, 2014, Aomori, Japan

PASJ2014-SUP015

4.1 簡単な放射パワーの見積り

まず、FEL 発振波長を 13.5 nm と仮定し、これが、ア ンジュレータの基本波長 λ_1 として得られるように、基 本的なパラメータを決定した。アンジュレータ周期 λ_u および強さ K と、ビームエネルギー γ により、

$$\lambda_1 = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2}\right) \tag{4}$$

の関係がある。これを示したのが、Fig. 7 である。ビー ムエネルギー 600 MeV (γ = 1200) を基本に考えること にした。

Figure 7: 13.5nm 発振の為のアンジュレータとビームエ ネルギーのパラメータ.

FEL パラメータ ρ により、FEL 発振の簡単な評価を 行う事が出来る。

$$\rho = \left(\frac{\bar{\kappa}K^2\lambda_u^2}{32\pi\gamma^3}\frac{j_0}{I_A}\right)^{1/3} \tag{5}$$

ビーム電流密度 j_0 次第であるが、ここでは、バンチ電 荷 100 pC/b, RMS バンチ長 100 fs, 規格化エミッタンス 1 μ m として適当に評価した。Fig. 7 と同様のパラメー タで表した結果を Fig. 8 に示す。 ρ はビームパワーか ら放射パワーへの変換効率を表すものであるから、600 MeV, 10 mA のマシンで、10 kW のパワーが取り出され ると期待できる。オーダーとして、Table 1 で仮定した フラックスが得られることが分かる。なお、この仮定で は、エネルギー回収運転が必須である。

4.2 GENESIS による計算

もう少し具体的に、計算コード GENESIS を用いて、 FEL 放射パワーの計算を行った。計算はバンチ長を入 れて、時間依存で行っている。入力した主なパラメータ を Table 2 に示す。

Fig. 9 は、アンジュレータに沿った放射パワーの様子である。バンチ電荷は一定として、ピーク電流とバンチ 長を変えた場合を同時に示している。1500 周期 (30m) 程度で飽和し、0.1 mJ/pulse が得られる。100 MHz だと、 9kW の計算である。

放射パワーを稼ぐ為、アンジュレータをテーパ型とし て計算を行った。アンジュレータ入口から 20m の地点

Figure 8: マシンパラメータによる FEL パラメータの 評価.

Table 2: 計算で入力したパラメータ		
アンジュレータ強さ	aw=0.980 (K = 1.4)	
アンジュレータ周期	$\lambda_u = 0.02 \text{ m}$	
発振波長	$\lambda_1 = 13.5 \text{ nm}$	
入力パワー	$P_{in} = 5 \text{ W}$	
ビームエネルギー	600 MeV ($\gamma = 1207.5$)	
エネルギー幅	$\Delta \gamma = 10^{-4}$	
規格化エミッタンス	$\epsilon_n = 1 \ \mu m$	
ビームサイズ	$\sigma_x, \sigma_y = 0.1 \text{ mm}$	
ビームピーク電流	<i>I</i> =400 A	
RMS バンチ長	$\sigma_t = 0.03 \text{ mm}$	

から K を線形に減少させた条件である。結果を Fig. 10 に示す。Fig. 9 のテーパ無しの場合と比較して、2~3 倍 のゲインが得られることが分かる。

ここまでの計算は、シード光は無しで、自発放射から 発振を始めるとして計算した(入力パワ-5W)。一方、 シード光を導入すると、発振が立ち上がるまでの長さが 短くでき、電子と光の時間的重なりがずれないうちに 飽和まで達する事が出来るので、より効率良く発振が できると期待できる。発振パワーのほんの一部(0.5%)

Figure 9: 放射パワーの成長の様子.

PASJ2014-SUP015

Figure 10: テーパ型アンジュレータの場合の放射パワー.

である 5 MW をアンジュレータ上流部に戻し、シード として利用するとして計算した結果を、Fig. 11 に示す。 長いテーパ型アンジュレータを使って、シード方式によ り、Fig. 10 の場合に比べて、さらに 3 倍のゲインが得 られることが分かる。放射パワーとして 0.9 mJ/pulse と なり、Table 1 で仮定した、100 eV の光子が 30 MHz で 10^{21} /s のフラックス、が得られることが分かる。

Figure 11: シードを導入した場合の放射パワー.

5. まとめ

エネルギー回収型線形加速器 (ERL) による将来光源 として、XFEL-O、EUV-FEL、LCSS-γ、などが検討さ れている。これらの、高繰り返しで高ピーク強度、とい う特徴は、アクシオン探索実験にも適している。これま でレーザーで行われた実験を、高エネルギー光子で行う ことにより、高質量側のパラメータに感度が得られる。 EUV-FEL については、近い将来に実現される可能性が あり、比較的短い実験時間で有意義な物理結果が得られ る見込みがある。

参考文献

- K. Ehret, et al., "New ALPS results on hidden-sector lightweights", Phys. Lett. B 689 (2010)
- [2] R. Rabadan, et al., "Photon Regeneration from Pseudoscalars at X-Ray Laser Facilities", Phys. Rev. Lett. 96, 110407 (2006)
- [3] R. Battesti, "Photon Regeneration Experiment for Axion Search Using X-Rays", Phys. Rev. Lett.105, 250405 (2010)