PASJ2014-SUOM08

高強度フェムト秒レーザー加速電子を用いた 超高速時間分解電子線回折法の開発 ULTRA-FAST ELECTRON DIFFRACTION USING ELECTRONS ACCELERATED BY INTENSE FEMTOSECOND LASER PULSES

阪部周二^{#, A, B)},橋田昌樹^{A, B)},井上俊介^{A, B)},時田茂樹^{A, B,*)}

Shuji Sakabe ^{#, A, B)}, Masaki Hashida^{A, B)}, Shunsuke Inoue^{A, B)}, Shigeki Tokita^{A, B, *)}

^{A)} Institute for Chemical Research, Kyoto University

^{B)} Graduate School of Science, Kyoto University

Abstract

We have demonstrated to use electron pulses accelerated by intense femtosecond laser pulses and self-compressed for ultrafast electron diffraction (UED). The electron pulses are generated by irradiating tightly focused terawatt femtosecond laser pulses on a polyethylene foil target, then, the pulses are compressed by using an achromatic bending magnet system. These femtosecond electron pulses have an intensity to demonstrate a single-shot diffraction pattern.

1. はじめに

物質科学やナノ科学が飛躍的に発展しているが, 物質の状態やその変化を調べるには高い空間と時間 分解能をもつ観察手法が必要となる.物質の原子状 態を知ることができる電子顕微鏡は今日までの半世 紀の間にレンズの高度化、高エネルギー電子加速管 の開発、そして収差補正技術の発明などのブレーク スルーを経てナノメートル以下の空間分解能を得ら れるまでに発展してきた.他方,時間分解能技術に ついては空間分解能と比してみると大きな遅れがあ ると言える.物質内部のノナメートルスケールで起 こる諸現象は究極的には単一原子の運動により決ま る.物質の極微細状態変化のような構造的な動力学 を単一原子の振動時間尺度(<数 100fs)で直接観察 できると唯一の方法と考えられるのが時間分解電子 線回折 (TRED) である. TRED を用いて, 固体の 相転移、気相の過渡的な分子構造、表面力学の観察 が試みられてきたが、今日までは TRED 実験はみな 数 ps の時間分解能に留まっている.フェムト秒の 時間分解で電子線回折により構造変化を直接測定す る手法の開発は大きな挑戦的課題である.特に,十 分な強度のフェムト秒電子パルスの発生が絶対不可 欠である.最近の当該研究はすべて電子を低強度 フェムト秒レーザーとフォトカソードを用いて発生 するものである. この方式では、レーザーパルス幅 程度の電子線を発生できるが、回折に利用できる数 100keV のエネルギーにまで加速しなければならな い.この間に「空間電荷効果」によりパルス幅は大 きく広がる.この問題を解決する手法として,電子 バンチ(パルス)密度を下げる(究極には1個)な どが報告されているが、これらはいずれも物質の高 速時間分解回折のための電子線源に求められる仕様 からほど遠いものである. すなわち, 諸現象に見ら れる構造的な動力学の殆どが不可逆的であるので, 単一パルスにより回折像を捉えなければならない.

2. レーザー加速電子線回折実験装置

UED を実現するための最も重要な課題は高輝度の 短パルス電子線源を開発することである. 超高強度 短パルスレーザーを薄膜に集光照射すると,光場に より薄膜表面に生成されるプラズマ電子を高エネル ギーに加速することができる. 我々はこのレーザー 加速電子の UED への応用を研究している^[1]. その 主な課題は(1)レーザー加速電子の特性測定と加速 機構の解明,(2)レーザー加速電子の高輝度化,(3) レーザー加速電子の短パルス化,(4) UED の予備実 証である. これにより,100fs 以下の時間分解能で 数 100keV の電子により単一パルスによる電子線回 折像を取得する手法を確立することが目標である.

筆者らが行った予備実験配置を Figure 1 に示す^[2]. EMCCD カメラ以外の装置はすべて約 10⁻² Pa に減圧 された真空容器内に配置される. 京都大学化学研究 所が有する高強度レーザー装置(フェムト秒チタン サファイアレーザー) T⁶-laser からのレーザービー ム(波長 800nm, 140mJ, パルス幅 150fs, 直径約 50mm)を等分割し,一方は電子加速ビーム,もう 一方はパルス幅測定ビームとして用いた.後者の ビームラインには可変光学遅延を挿入している.そ れぞれのビームを軸外し放物面鏡(焦点距離 165mm) で集光し,集光点のビーム幅は 6×4µm² である.そ の結果,集光点の光強度は約 10¹⁸W/cm² に達する. 電子加速ビームをポリエチレン膜(厚さ 10µm)の ターゲットに入射角 10°で照射し,電離したター ゲットの電子は主として J×B 加熱や真空加熱により

そのため回折に適したエネルギーでかつ十分な電子 量の極短パルスが不可欠である.筆者らは超高強度 極短パルスレーザー生成プラズマ中で加速される高 エネルギー電子を用いて,単一パルスで数 100fs 以 下の時間分解回折像の撮像を実証し,時間分解電子 線法(UED: Ultrafast Electron Diffraction)の開発に取 り組んでいる.

[#] sakabe@laser.kuicr.kyoto-u.ac.jp

^{*}現所属:大阪大学レーザーエネルギー学研究センター

Proceedings of the 11th Annual Meeting of Particle Accelerator Society of Japan August 9-11, 2014, Aomori, Japan

PASJ2014-SUOM08

Figure 1: Schematic diagram of the experimental setup of electron pulse compression and pulse duration measurement: (a) top view and (b) side view.

加速・放出される.よって、初期の電子パルス幅は レーザーのパルス幅と同程度であると考えられ、実 際、別の実験でこの事は検証されている^[3].このと き電子は集光点と同程度の領域から放出するが指向 性が弱いため, 永久磁石により構成した磁気レンズ とアパーチャ(直径 1mm)により発散角の小さい 電子ビームへと整形した^[4].ターゲットから放出し た電子は 100keV~1MeV を中心とする幅広いエネル ギー分布をもつが,磁気レンズを通過した時点でお よそ 350keV を中心としたある程度狭いエネルギー 範囲のみが選択される、整形した電子ビームを磁場 強度 63mT の偏向磁石を 2 台用いて 180°を 2 回(合 わせて 360°) 偏向する. 偏向磁石へのビームの入 射・出射のため, 第2の偏向磁石を第1の磁石に対 し 12°の角度をつけて配置し、エネルギー選択のた め 180°偏向後のビーム行路上に幅約 1mm スリット (350keV において約 1%の運動量幅に対応)を配置 している. さらに、360°偏向後のビーム行路上に 2 台の四重極電磁石を配置した.2 台の四重極電磁石 の電流値を調節することにより、スクリーン上での 電子ビーム径が最小となるように電子ビームの水 平・垂直方向の広がり角を調整した.また、四重極 電磁石の中心軸とビーム軸をずらすことにより、偏 向磁石で生じる横方向のエネルギー分布の偏りを補 正している.四重極磁石通過後およそ 0.1m の位置 (ターゲット位置か 0.45m) で電子パルスは圧縮さ れ、パルス時間幅が最小となる、この位置で電子パ ンデロモーティブ力による電子の散乱を観測するこ とによりパルス幅を測定できる. 高い時間分解能を 上述の装置を用いて行った電子回折測定の実証実験 ルスと高強度レーザーパルスを垂直に交差させ、ポ 得るため電子ビームは第2の磁気レンズにより 70µm まで収束し、測定レーザービーム(ビーム幅 6×4µm²)と交差させ、第3の磁気レンズにより再び 平行ビームに戻した後、蛍光スクリーンに入射する.

3. 結果

3.1 電子パルス幅測定

電子パルスとレーザーパルス間の遅延時間を変化 させ電子線像を観測する. レーザービーム進行方向 の横方向にポンデロモーティブ力により散乱された 電子の像に含まれる散乱電子量を遅延時間に対して プロットするとトレースが得られる.これは電子パ ルスとレーザーパルスのエンベロープの相互相関に 対応する. 各々のパルスがガウス関数のエンベロー プを持つと仮定した場合,電子パルスの時間幅(半 値全幅)は 524±59 fs と見積もられた(この結果は 論文に発表した値を記しているが、その後の実験で 300fs に達している). この時間幅は電子加速レー ザービームの時間幅(150fs)と比較して大きい.現 時点でこの原因は明らかではないが、レーザーとプ ラズマの相互作用における電子放出において、何等 かのパルス幅を伸ばす効果が存在することを示唆し ている.

3.2 単一パルス電子線回折の実証実験

について述べる.厚さ 10 nm の金の単結晶(001) 薄膜を四重極磁石後のビーム行路上に設置し,観察 試料として用いた.パルス幅測定で電子ビーム収束 に用いた第二および第三の磁気レンズを取り除き, スクリーンに近づくにつれ徐々にビームが収束する ように四重極磁石を調整する. 試料位置での電子 ビームの直径は約 0.8mm であり,パルスあたりの電 荷量は 6fC である. 試料により散乱された電子は 0.41m 後方の蛍光スクリーンへ入射し,スクリーン 上で生じた回折パターンは EMCCD カメラにより撮 影する. 単一ショット撮影により得られた回折像を Figure 2 に示す. 明瞭な (020) 及び (220) 面の回 折スポットが観察でき,単一ショット撮影に十分な ビーム強度が得られていることがわかる. 既知の金 単結晶の格子定数より,電子ビームのエネルギーは 356keV と算出された.

Figure 2: Diffraction patterns obtained from gold (001) single-crystal sample with (1) single shot and (b) 10-shot irradiation.

3. 結 言

以上の成果から,我々は 350keV のレーザー加速 電子ビームを 500fs に圧縮を世界で初めて実証し, それを用いて単一パルスでの電子線回折像の撮像に 成功した.これらは最終目的に向けて研究を発展さ せるための有意義な成果であり.既に,レーザー装 置の短パルス化とパルスの高品位化などの装置改良 を実施し、新しい線源の探求に取り組んでいる^[5,6] また,この高強度短パルスレーザー加速された短パ ルス電子は電子偏向法の電子源に用いてプラズマや 物質近傍の電磁場の測定にも有効である.

謝 辞

本研究は科学研究費補助金(基盤研究(A) (18206006),挑戦的萌芽研究(22654050),基盤研 究(S)(23226002),基盤研究(C)(24540537),挑戦的 萌芽研究(25600138)),山田科学財団,三菱財団, 京都大学のコアステージバックアップからのご支援 を頂き行われております.研究のご支援に深く感謝 申し上げます.

参考文献

- S. Tokita, S. Inoue, S. Masuno, M. Hashida, and S. Sakabe: "Single-Shot Ultrafast Electron Diffraction with a Laser-Accelerated Sub-MeV Electron Pulse", Applied Physics Letters 95, 111911 (2009).
- [2] S. Tokita, M. Hashida, S. Inoue, T. Nishoji, K. Otani, and S. Sakabe: "Single-Shot Femtosecond Electron Diffraction with Laser-Accelerated Electrons: Experimental Demonstration of Electron Pulse Compression", Physical Review Letters 105, 215004 (2010).
- [3] S. Inoue, S. Tokita, K. Otani, M. Hashida, and S. Sakabe: "Autocorrelation measurement of fast electron pulses emitted through the interaction of femtosecond laser pulses with a solid target", Physical Review Letters 109, 185001(2012).
- [4] S. Inoue, S. Tokita, T. Nishoji, S. Masuno, K. Otani, M. Hashida, and S. Sakabe: "Single-shot microscopic electron imaging of intense femtosecond laser-produced plasmas", Review of Scientific Instruments 81, 123302 (2010).
- [5] S. Tokita, K. Otani, M. Hashida, T. Nishoji, S. Inoue, M. Hashida, and S. Sakabe: "Collimated Fast Electron Emission from Long Wires Irradiated by Intense Femtosecond Laser Pulses", Physical Review Letters 106, 255001 (2011).
- [6] H. Nakajima, S. Tokita, S. Inoue, M. Hashida, and S. Sakabe: "Divergence-free transport of laser-produced fast electrons along a meter-long wire target", Physical Review Letters 110, 155001(2013).
- [7] S. Inoue, S. Tokita, K. Otani, M. Hashida, and S. Sakabe: "Femtosecond electron deflectometry for measuring transient fields generated by laser-accelerated fast electrons", Applied Physics Letters **99**, 31501 (2011).