PASJ2014-SUOM05

レーザー駆動粒子線加速手法を用いた重イオン加速とその応用

(加速器とレーザーの融合による不安定核ビームの生成) LASER-DRIVEN HEAVY ION ACCELERATION AND ITS APPLICATIONS

榊 泰直^{#)A)}, 西内 満美子^{A)}, エシュリケポフ チムール^{A)}, 西尾 勝久^{A)}, ピクツ タチアナ^{B)}, ファエノフ アナトリー^{B)}, オルランディー リカルド^{A)}, ピロゾコフ アレキサンダー^{A)}, 佐甲 博之^{A)}, 匂坂 明人^{A)}, 小倉 浩一^{A)}, 金崎 真聡^{A)}, 福田 祐仁^{A)}, 桐山 博光^{A)}, 小浦 寛之^{A)}, 神門 正城^{A)},

山内 知也^{C)},渡辺 幸信^{D)},セルゲイ ブラノフ^{A)},近藤 公伯^{A)},今井 憲一^{A)},永宮 正治^{E)}

Hironao Sakaki ^{A)}, Mamiko Nishiuchi ^{A)}, Timur Esirkepov ^{A)}, Katsuhisa Nishio ^{A)}, Tatiana Pikuz ^{B)}, Anatoly Faenov ^{B)}, Riccardo Orlandi ^{A)}, Alexander Pirozhkov ^{A)}, Hiroyuki Sako ^{A)}, Akito Sagisaka ^{A)}, Koichi Ogura ^{A)}, Masato Kanasaki ^{A)},

Yuji Fukuda^{A)}, Hiromitu Kiriyama^{A)}, Hiroyuki Koura^{A)}, Masaki Kando^{A)}, Tomoya Yamauchi^{C)},

Yukinobu Watanabe D, Bulanov Sergay A, Kiminori Kondo A, Kenichi Imai A and Shoji Nagamiya E

^{A)} Japan Atomic Energy Agency, ^{B)} Osaka University, ^{C)} Kobe University, ^{D)} Kyusyu University, ^{E)} RIKEN

Abstract

The novel tool for the frontier of the exotic nucleus was proposed by fusing the high-intensity laser technology and the accelerator technology. We carried out its proof-of-concept experiments at the J-KAREN laser system. And, the iron which is simulated the produced exotic nucleus were extracted by the laser from aluminum membrane.

1. はじめに

2000年に米国ローレンスリバモア研究所で、最高 エネルギー58MeV 陽子が固体薄膜ターゲットとkJ・PW クラスのガラスレーザーの相互作用によって生成^[1] した事を皮切りに、高強度レーザーと物質との相互 作用によるレーザー駆動イオン加速研究の研究が始 まった。

10²⁰W/cm²を超えるようなエネルギー密度を持つ高 強度レーザーと物質の相互作用によって発生する電 荷分離電場を利用したイオン加速^[2]、既存の高周波 (RF: Radio Frequency) 加速器施設における RF と 加速空洞を用いた加速装置が作りだす電場と比較に ならない電場強度(~1TV/m)が達成可能で、ターゲッ ト裏面に生じる局所的な加速電場により陽子を数十 MeV まで加速することが可能である。原子力機構関 西研では、医療応用に向けたレーザー駆動型粒子線 装置の開発を目指し^[3]、様々な技術開発を行ってき ており、2012年には繰り返しレーザーショットが可 能なフェムト秒パルスを有するチタンサファイア レーザーにより 40MeV を超える陽子発生に成功^[4]し、 超小型サイズのレーザー駆動イオン加速器ベースの 粒子線治療装置の実現可能性が現実味を帯びてきて きた。

一方で、原子力機構におけるミッションとしては 原子力工学への貢献も踏まえた検討を行う必要があ り、福島第一原発の収束に関わる研究もさることな がら、今後国家プロジェクトとして推進していくこ とが見込まれている核変換用加速器駆動型未臨界炉 システム(ADS)^[5]を実現するにあたり、

・炉設計の精度向上のために必要なマイナーアクチ

ニドの高速中性子反応断面積

- 未臨界炉での核変換後の核種生成量分布
- ・未臨界炉内での生成核種が高速中性子・高エネル ギー陽子衝突反応によってさらに長寿命なアイソ マーに変化することはないか?

などがまだ理論的にも実験的にも、明確なデータが 示されていない状況で、ADS の工学的実証と並行し てそれらの取得を目指していく必要がある。同様に、 原子核工学以外の分野である原子核物理学や宇宙物 理学などでは、短寿命核種や超重元素研究において も、現状の加速器技術では到達できないフロンティ ア領域にある原子核反応データや核構造データを包 括に取得することが望まれている。そのため我々は、 レーザーイオン加速手法を、医療応用を目指した陽 子加速に限定することなく、重イオン加速手法にも 適用することで工学や基礎科学で要望があるフロン ティア領域にある重イオンを計測可能にするという 新技術開発の提案ができないかを探ることにした。

2. 不安定核種ビーム生成

ここでは ADS を例に挙げて不安定核種ビーム生成 について説明する。ADS のように、マイナーアクチ ニド燃料を核変換するに当たり、燃料や燃料から生 成される核分裂生成物の核特性を精度よく把握する には、I)生成された核種ごとに純度の高いターゲッ トを作りあげ(たとえばセシウムの不安定同位体)、 そのターゲットに加速器で高エネルギーの陽子ビー ムなどを照射して核データを得る、II)加速器で多 種多様な核生成物ビームを作り高エネルギーに加速 し、水素が多く含まれるターゲット

[#] sakaki.hironao@jaea.go.jp

Proceedings of the 11th Annual Meeting of Particle Accelerator Society of Japan August 9-11, 2014, Aomori, Japan

PASJ2014-SUOM05

Figure 1: The in-flight (1) and ISOL (2) production mechanisms for radioactive beams.

に照射、反応を計測し逆運動学的に解析する手法と なる。ADS に関わる元素において網羅的に核データ を取る際、I)手法においては、ADS の核変換で生成 される多種多様の核種(特に短寿命核種)のター ゲットを個別に生成していくことは困難であると容 易に想像できる。不安定核種ビーム生成のII)手法 においては、一般に図1のIn-flight法とISOL法が 使われるが、両者には一長一短があり、核データを 整備する上で取得できない核種も存在する。そのた め、不安定核種データ収集に関する新規基盤技術の 提案が望まれる。

レーザー駆動イオン加速を用いたオン ライン・イオン引き出し技術の提案

我々は、不安定核種の核データ取得のために、 レーザー駆動イオン加速技術を利用した、「Inflight 法や ISOL 法による技術の欠点を補完する新 規基盤技術」を提案する^[6]。これは図 2 に示すよう に、In-flight 法と ISOL 法の両者技術を、レーザー 技術で補完したようなシステムであり、ターゲット に加速器からプロダクト生成用ビームを照射し、そ こに生成された短寿命核種のプロダクトを、レー ザー加速技術で一気に引き出し、下流のセパレータ

Figure 2: Online beam extraction method for the exotic nuclei.

で核種を弁別し計測を行うという、レーザー技術と 既存加速器技術が融合されたアイディアである。

4. 提案手法の概念実証実験

本手法の概念実証実験を原子力機構関西研の J-KAREN レーザーで行った。今回は 0.8µm 厚さのアル ミ薄膜に、加速器ビームによる生成核種を見立てた 鉄を表面近傍に微量付着させ、それを高エネルギー かつ指向性を持たせて引き出すことで実証実験とし た。本概念実証実験の詳細および結果については、 ここでは記載しない。我々の Arxiv 投稿^[6]を参照し ていただきたい。

5. おわりに

今回、重イオン加速の新たな基盤技術を提案し、 その概念実証実験の成功によって、この技術の応用 展開の可能性を示すことに成功した。今後は、詳細 な実験を繰り返し、最適パラメータを求めたうえで、 加速器を用いた原理実証試験を目指し、原子力工学 や基礎科学のフロンティアに貢献、新たな知見を創 成していくことで、次の世代の発展を支える。

参考文献

- [1] R. A. Snavely, et al., Phys. Rev. Lett. 85, (2000) 2945.
- [2] S. P. Hatchett, et al., Phys. Plasmas 7, (2000) 2076.
- [3] H.Sakaki, et al., Proceedings of the 7th Annual Meeting of Particle Accelerator Society of Japan (2010) 312.
- [4] Koichi Ogura, et al., Optics Letters, Vol. 37, 14, (2012) 2868.
- [5] K.Tsujimoto, H.Oigawa, K.Kikuchi, et al., Nucl. Tech., 161, (2008) 315.
- [6] M.Nishiuchi, H.Sakaki, K.Nishio, et al., http://arxiv.org/abs/1402.5729 (2014).