マルチワイヤを用いた電磁石精密アライメントシステムの開発

(Development of Precise Magnet Alignment System using Multi-Vibrating Wires)
深見健司^{#,A)}、安積則義^{B)}、藤田貴弘^{A)}、本井傳晃央^{A)}、鍛治本和幸^{C)}、木村洋昭^{B)}、松井佐久夫^{B)}、
中西辰郎^{C)}、岡安雄一^{A)}、渡部貴宏^{A)}、張超^{A)}
^{A)} JASRI/SPring-8、^{B)} RIKEN, Harima Branch、^{C)} SPring-8 Service Co., Ltd.

- 1. はじめに
- 2. 方法 (周波数フィードバック、マルチワイヤについて)
- 3. 測定
- 4. 結果 (フィードバック性能)
- 5. 考察 (磁場中心分解能、ドリフト)
- 6. まとめと克服すべき問題点

fukami@spring8.or.jp

<u>1. はじめに</u>

「電磁石の精密アライメント技術」:次世代リングのカギを握る

ミクロンオーダーに迫る高いアライメント精度

→ 設計自由度の増大 + ビーム調整の期間の短縮。

Vibrating Wire Method (VWM) :

ビーム中心軸に張ったワイヤに、AC 電流を通電して磁場中で強制振動させる。

→ 共鳴点でのワイヤの振幅は誤差磁場に比例。振動が無くなる場所が磁場中心。 (利点)

分解能が高く、他の基準点に移設する必要が無い。

(欠点)

外気温等の変動で<u>共鳴周波数が容易に変化</u>し、振幅変動。磁場の変化と区別できない。

本研究の特長

AC 電流の周波数を共鳴周波数に追従させる。(周波数フィードバック)

SPring 8

図 2-1. VWM の試験用セットアップ。 ・ワイヤ材質:Be-Cu(0.2¢)、ワイヤ長:1.95 [m]、張力:2 [kgw] → 基本共鳴周波数:70 [Hz]、サジッタ:62.5 [µm] (試験電磁石:中央に設置)

$$f_n = \frac{n}{2L} \sqrt{\frac{T}{\rho}}, \qquad S = \frac{\rho g}{8T} L^2 = \frac{g}{32f_1^2}$$

共鳴周波数付近での振幅 $A(\omega)$ 、位相 $\phi(\omega)$

2. 方法(周波数フィードバック)

$$A_n(\omega) = \frac{a_n}{\sqrt{(\omega^2 - b_n^2)^2 + c_n^2 \omega^2}}$$
$$\phi_n(\omega) = \tan^{-1} \frac{c_n \omega}{\omega^2 - b_n^2}$$

 b_n :共鳴周波数 $2\pi f_n$ [rad/s]、 c_n :減衰定数 [s⁻¹] a_n [m/s²] → 磁場

共鳴点での振幅だけで磁場は求められる。 但し、共鳴周波数は容易に変化する。

→通電周波数を共鳴周波数に追従させる。 (周波数フィードバック)

共鳴点での位相は 90°、周波数の変化量は、 位相の測定値から推定できる。

$$\Delta\omega \cong \frac{c_n}{2\tan\phi_n}$$

図 2-2. 振幅、位相の周波数依存性。

<u>2. 方法(マルチワイヤ)</u>

磁場信号用ワイヤ(Signal Wire)は磁場中心付近にある。 → 磁場が十分強い位置にフィードバック専用ワイヤ(Feedback Wire)を設置。 Signal Wire 自身の位相でのフィードバック: Basic Feedback Feedback Wire の位相でのフィードバック: Advanced Feedback

図 2-3. VWM の試験用セットアップ(左)とワイヤ断面図(右)。AWG, Lock-in AMP 等の測定回路系は、ワイヤ個別に用意されている。

Feedback Wire の通電による磁場の重畳:<1[µTm]
 →磁場を打ち消すための Counter Wire の必要性について検討。

<u>3. 測定(フィードバック性能)</u>

<u>試験電磁石:水平、垂直コンバインドニ極電磁石 2×10-3 [T] × 0.15 [m]、一定磁場</u>

- 3-1. 振幅、位相の周波数応答の測定
- ・位相による周波数フィードバックに必要な振動の減衰定数 c の決定。
- Feedback Wire の影響について評価するため、ON/OFF による Signal Wire の a, c 係数の変化を観測。
- 3-2. フィードバック試験

以下の3条件で振幅、位相の変動を6時間連続測定した。 サンプリングレート:1[S/sec]、100[sec]分の移動平均を記録。 (1)フィードバック無し

- ・振幅、位相の変動量の観測。
- (2) Basic Feedback 有り
 - ・振幅、位相の安定度の観測。
 - <u>
 Signal Wire, Feedback Wire 共鳴周波数の相関の観測。</u>
- (3) Advanced Feedback 有り
 - ・振幅、位相の安定度の観測。

基本共鳴周波数だけでなく、3-rd, 5-th, 7-th 高調波について行った。 (ワイヤの最大振幅を ±50 µm(r.m.s.)として通電電流値を決めた。)

3. 測定(磁場中心測定分解能)

<u>試験電磁石:四極電磁石 40[T/m]×0.1[m]</u>

3-3. 磁場中心位置の測定

電磁石の水平方向、垂直方向位置を遠隔制御ステージを用いて1[µm]ステップで移動、 ワイヤ振幅の変化を測定。(1-st、Basic Feedback)

3-4. 磁場中心位置のドリフトの監視

電磁石の磁場中心位置とワイヤ位置とを一致させ、その後ワイヤの振幅を 48 時間連続 測定。サンプリングレート:1 [S/sec]。(1-st、Advanced Feedback)

4. 結果(周波数応答)

図 4-1. Signal Wire の振幅、位相の周波数応答。

4. 結果(周波数応答)

Table 3-1. 次数別フィッティング結果	果まとめ
-------------------------	------

A(m) =	a _n
$A_n(\omega) = -\sqrt{1-1}$	$\sqrt{(\omega^2 - b_n^2)^2 + c_n^2 \omega^2}$

n	F	eedback Wire : ON		Fe	edback Wire : OFF	
	<i>a_n</i> [ms ⁻²] x10 ⁻	$b_n/2\pi$ [Hz]	<i>c</i> _n [s ⁻¹]	<i>a_n</i> [ms ⁻²] x10 ⁻²	<i>b_n /2π</i> [Hz]	<i>c</i> _n [s⁻¹]
1	2.02 ± 0.03	70.641 ± 0.002	0.89 ± 0.02	2.07 ± 0.03	70.643 ± 0.001	0.87 ± 0.02
3	5.96±0.09	211.880 ± 0.004	1.06 ± 0.03	6.42 ± 0.10	211.880 ± 0.005	1.17 ± 0.05
5	8.55±0.13	353.080 ± 0.008	2.89 ± 0.05	8.47 ± 0.09	353.080 ± 0.006	2.81 ± 0.04
7	5.56 ± 0.10	494.560±0.009	1.93 ± 0.10	5.68 ± 0.09	494.540 ± 0.008	1.90 ± 0.11

Feedback Wire の磁場の重畳は無視できる。→ Counter Wire は設置しなかった。

Table 3-2. 次数別フィードバック係数

n	Signal Wire c _n [s ⁻¹]	Feedback Wire c_n [s ⁻¹]
1	0.80	0.76
3	1.04	1.13
5	3.02	1.73
7	2.06	1.75

$$\Delta\omega \cong \frac{c_n}{2\tan\phi_n}$$

4. 結果(周波数フィードバック: Basic Feedback)

Basic Feedback により振幅の変動は 4 [%] 以内に抑制 !

(周波数フィードバック:Advanced Feedback) 4.

SPring. 8

実際に Basic Feedback と同等 の安定度が得られた(右図)。

1329

1328

1327

1326

Signal wire ω_s [rad/s]

SPring 8

図 4-5. フィードバック有無での振幅、位相の時間的変化。

解能)

図 5-1. 電磁石の位置に対するワイヤの振幅(1-st)。

5. 考察(磁場中心測定分

電磁石設置位置 1 [μm] に対するワイヤ振幅の変化量は 2.8 [μm]。 位置分解能は 0.1 [μm] に達する。→積分磁場 0.4 [μTm] に相当。

5. 考察(バックグラウンド磁場の影響)

(1) <u>地磁気</u>

励磁をOFFとしてもワイヤの残留振動あり。 ・従来方式

残留振動を差し引く。

サブミリオーダーの広い走査から内挿する。

・目標

電磁シールドで目標 < 0.1 [μTm]。

(2) 残留磁場

複数の四極、六極電磁石を共通架台実機上でアライメントする際に対策が必要。

·従来方式

- 水平走査時: B_x 、垂直走査時: B_y を用いる。 サブミリオーダーの広い走査から内挿する。
- ・目標

対象以外の電磁石の電磁シールド。

表 5-1. バックグラウンド磁場の大きさ

項目	積分磁場 [µTm] <i>B_yL B_xL</i>		
検出分解能*	0.4	0.4	
地磁気 (@ 1-st resonance) (@ 3-rd resonance)	50 3	40 9	
残留磁場 (@ x=50μm) (@ y=50μm)	1 0	0 1	

* 通電電流を15倍まで増大可能(ΔT < 20 K)。 最小分解能は0.027 [µTm]

図 5-2. 電磁石位置に対する B_x, B_yの積分磁場。左:水平方向、右:垂直方向。 B_y"L = 2000 [T/m²] × 0.2 [m] を仮定した。

・地磁気、残留磁場とも無視できる。

図 5-3. 電磁石位置に対する B_x, B_yの積分磁場。左:水平方向、右:垂直方向。 B_y"L = 2000 [T/m²] × 0.2 [m] を仮定した。

・地磁気、残留磁場とも無視できない。 \rightarrow 水平走査時: B_x 、垂直走査時: B_y を用いる。 \rightarrow バックグラウンド磁場の電磁シールドを検討。

<u>5. 考察(磁場中心ドリフト)</u>

図 5-4. 磁場中心位置の時間的変化とワイヤ架台表面の温度変化。

垂直方向:架台表面温度と相関が明確。Δy = -7.3 [µm/K]。 水平方向:架台傾きに起因?

→ Advanced Feedbackを用いることにより、ドリフトの自動監視が可能。

5. 考察(磁場中心ドリフト)

図 5-5.四極電磁石の磁場中心位置測定時の写真(左)。右は電磁石部拡大図。

6. まとめと克服すべき問題点

<u>まとめ</u>

・一定磁場中でのワイヤの振幅を安定させる手法として、周波数フィードバックは有効であることを示した。振幅の周波数応答を取得する必要が無いので、迅速に測定可能。
 ・Signal Wire が磁場中心付近にあってもフィードバックできる Advanced Feedback についても同等の性能を確認した。アライメント中の磁場中心のドリフト、事前の材料試験などに有効である。

克服すべき課題

 ・バックグラウンド磁場のシールドが肝要である。地磁気、残留磁場とも測定手法により 避けることは可能であるが、シールドできれば測定精度、測定の自由度とも改善できる。