**PASJ2014-SAP088** 

# J-PARC MR における BPM のビームベースドアラインメント

## **BEAM-BASED ALIGMNENT OF THE BPMS AT J-PARC MR**

外山 毅<sup>#, A)</sup>, 畠山 衆一郎 <sup>B, C)</sup>, 岡田 雅之 <sup>A)</sup>, 高野 淳平 <sup>A)</sup>,

五十嵐 進 ^), 花村 幸篤 <sup>C)</sup>, 橋本 義徳 <sup>A)</sup>, 河内 敏彦 <sup>C)</sup>, 久保木 浩功 <sup>A)</sup>, 仁木 和昭 <sup>A)</sup>,

酒井 浩志<sup>C)</sup>, 佐藤 洋一<sup>A)</sup>, 佐藤 健一郎<sup>A)</sup>, 白形 政司<sup>A)</sup>, 手島 昌己<sup>A)</sup>

Takeshi Toyama #, A), Shuichiro Hatakeyama<sup>B, C)</sup>, Masashi Okada<sup>A)</sup>, Junpei Takano <sup>A)</sup>,

Susumu Igarashi A), Kotoku Hanamura C), Yoshinori Hashimoto A), Toshihiko Kawachi C), Hironori Kuboki A),

Kazuaki Niki<sup>A)</sup>, Hiroshi Sakai<sup>C)</sup>, Yoichi Sato<sup>A)</sup>, Kenichirou Satou<sup>A)</sup>, Masashi Shirakata<sup>A)</sup>, Masaki Tejima<sup>A)</sup>

A) KEK

## B) JAEA

<sup>C)</sup> Mitsubishi Electric System & Service Co. Ltd.

#### Abstract

In high beam intensity accelerators such as J-PARC, precise measurements of beam orbits are indispensable to control the beam orbits and to reduce beam losses as well as modeling the accelerators with determining precise machine parameters as beta function, dispersion function and so on. For these aim the centers of the BPMs should be known in terms of the quadrupole magnet centers in the transverse plane. In spring 2014 we carried beam based alignment (BBA) and beam based gain calibration (BBGC) for 186 BPMs in the J-PARC MR. Using fully calibrated BPMs, the closed orbits (COD) were corrected better than using previous partially calibrated BPMs. The residual CODs were improved from 0.39 mm (RMS) to 0.15 mm (RMS) in the vertical direction. Beam losses were reduced accordingly. In the horizontal plane the position data are significantly deteriorated by the synchrotron oscillation and the field ripples of the bending magnets. This makes the correction improvement ineffective in this plane.

#### 1. はじめに

J-PARC のような大強度加速器では、ビーム軌道 の精密な測定は、軌道を精密に制御してビームロス を低減するために必須である。単純な軌道変位によ るもの以外に、ビーム空間電荷と COD の両方に依 存するビームロスも予想されている[1]。さらに、β関 数、ディスパージョン関数などのマシン・パラメー タを決定し、正確な加速器モデルを作るためにも重 要である。そのためには、ビーム位置モニター (BPM)の transverse 座標を、加速器の transverse 座 標の原点である隣接Q電磁石の中心を基準にして、 知る必要がある。そのために、今回、MR の COD 観測用 BPM の 186 台全てについて、上記のオフ セットを測定する beam-based alignment (BBA)<sup>[2][3]</sup>、 および各 BPM チャンネルのゲインの相対誤差を測 定する beam-based gain calibration (BBGC)<sup>[4]</sup>を行っ た。BBA により BPM の幾何学的オフセットと電気 的オフセットの和、BBGC により BPM の電気的オ フセットが求められ、誤差が完全に決定される<sup>[5]</sup>。 本稿では、J-PARC MR での BBA・BBGC による校 正の方針、BBA 測定方法と結果、COD 補正結果、 およびデータ誤差の吟味に関して述べる。

## 2. BBA・BBGCによる校正

J-PARC MR では対角線カットの電極を使用して

いるので、ビームの水平・垂直座標(x, y) に対す る各電極の出力電圧 $V_L$ ,  $V_R$ ,  $V_U$ ,  $V_D$ は、 $g_L$ ,  $g_R$ ,  $g_U$ ,  $g_D$ ,  $\lambda$ , aをそれぞれ、各電極のゲイン、ビーム 電荷、有効電極半径、  $x_{meas}$ ,  $y_{meas}$ ,  $x_{beam}$ ,  $y_{beam}$ ,  $x_0$ ,  $y_0$ をそれぞれ、x, yの測定値, x, y のビーム位置, x, y のオフセットとし、 $g_L$ =1とすると、

$$V_L = \lambda \left\{ 1 + \left( x_{beam} + x_0 \right) / a \right\}, \tag{1.a}$$

$$V_{R} = g_{R} \lambda \{ 1 - (x_{beam} + x_{0}) / a \}, \qquad (1.b)$$

$$V_U = g_U \lambda \{ 1 + (y_{beam} + y_0) / a \},$$
(1.c)

$$V_D = g_D \lambda \{ 1 - (y_{beam} + y_0) / a \},$$
(1.d)

と表すことができる。aはワイヤー法で得られる位置感度係数を使用し、 $g_L$ (=1),  $g_R$ ,  $g_U$ ,  $g_D$ の誤差を

$$\Delta g_x = a \frac{g_L - g_R}{g_L + g_R}, \quad \Delta g_y = a \frac{g_U - g_D}{g_U + g_D} \qquad (2)$$

と表すと、 $x, y, \Delta g_x, \Delta g_y$ の第1近似では、  $V_x - V_z$ 

$$x_{meas} = a \frac{v_L - v_R}{V_L + V_R} \approx x_{beam} + x_0 + \Delta g_x$$
(3.a)

$$y_{meas} = a'_y \frac{V_U - V_D}{V_U + V_D} \approx y_{beam} + y_0 + \Delta g_y \qquad (3.b)$$

<sup>#</sup> takeshi.toyama@kek.jp

#### **PASJ2014-SAP088**

となり、ビーム座標に幾何学的オフセット $x_0, y_0$  と ゲイン・オフセット $\Delta g_x, \Delta g_y$  が加わった形になる。 そこで、BBA により $x_0 + \Delta g_x, y_0 + \Delta g_y$ 、BBGC によ り $\Delta g_x, \Delta g_y$  (実際には $g_R, g_U, g_D$  ( $g_L$  = 1))を求める 事により、誤差を全て求めることが可能である。

校正頻度については、BBA は設置・アライメント 毎に一回、BBGC は各ゲイン毎に1回行えば良いこ とになる。

## 3. BBA 測定

#### 3.1 測定方法

BPM、ステアリング電磁石(STM)、4 極電磁石 (QM)の配置は、基本的に Fig. 1 の通りである(QM 下流に BPM が配置されている箇所が 9 箇所ある)。 各 QM には補助コイルが巻いてある。各 BPM につ いて水平、垂直の各平面で、Bump 軌道:約-4,0,+4 mm それぞれについて、QM 補助コイル:-4,-2,0, +2,+4 A を通電した(Fig.2)。

MR の運転を 3GeV DC, 8 bunch 入射とし、K3+1.5 s でアボートした。Bump 軌道、RF 電圧とビームの時 間関係を Fig. 3 に示す。ビーム入射から取り出すま での 1 ms 毎の全周の軌道を記録した。測定時の ビーム・パラメータを Table 1 にまとめる。



Figure 1: Layout of the BPM and magnets.



Figure 2: Schematic of the quadrupole magnet system.

Table 1: Machine Parameters

| Beam intensity                | $\sim 6.3 \text{ x } 10^{12} \text{ ppp}$ |
|-------------------------------|-------------------------------------------|
| Number of bunches             | 8                                         |
| Thinning/macro-pulse/Chopping | $10/32$ / $100~\mu s$ / $456~ns$          |
| Energy                        | 3 GeV                                     |
| Betatron tune $(v_x/v_y)$     | 22.41 / 20.75                             |
| Chromaticity $(\xi_x/\xi_y)$  | -4 ~ -2 (85 <b>-</b> 90 %)                |
| RF voltage                    | 160 kV (fundamental)                      |
|                               | 0 kV (2nd harmonic)                       |
| BPMC Ext. filter              | Off                                       |
| BPMC Att.                     | 0 dB                                      |
| BPMC Gain                     | 5                                         |

3.2 測定データ







Figure 4: Bump orbit example at the BPM #131. (a)  $y_{COD}$  at #131, (b)  $\langle y_{COD} \rangle$  along the MR.

各 BPM の各平面の BBA で、それぞれ 3×5=15個、 合計 30 個のデータセットが得られる。例として、 152 番地(BPM#131)で y 方向に Bump 軌道をつくっ た時の y 軌道の時間変化、K1+401ms から 1 s 間の MR 全周の平均軌道を Fig. 4 (a), (b)に示す。この時 の x, y 軌道の標準偏差値 ( $\sigma$ ) を Fig. 5 に示す。青 線が x 軌道  $\sigma$ 、赤線が y 軌道  $\sigma$ に対応する。1 s 間 のデータの Fourier 変換を Fig. 6 に同じ色で示す。 x<sub>coD</sub> のスペクトルで 330Hz 近傍のピークはシンク ロトロン振動に、200Hz 以下に広がったスペクトル は、後に述べるように主に偏向電磁石 (BM) の リップルによるものと考えられる。



Figure 5: Standard deviations of 1-second  $x_{COD}$  (blue) and  $y_{COD}$  (red) at 186 BPMs along the MR.



Figure 6: Frequency spectra of  $x_{COD}$  (blue) and  $y_{COD}$  (red) measured at BPM#26 (QM#30).

3.3 BBA による BPM オフセット測定結果

各 Bump 軌道 (約-4, 0, +4 mm) に対して、QM 補 正コイル電流値とビーム位置 (K1+401ms~1400ms の間のデータの平均値) をプロットすると Fig. 7 を 得る。Bump 軌道が QM の中心を通過する場合は、 QM 補正コイル電流値変化による軌道変化が無い。 このような点を求めるために、Bump 軌道に対する  $\partial x/\partial I_Q$ ,  $\partial y/\partial I_Q$ の変化をプロットすると Fig. 8 を得 る。ここで  $\partial y/\partial I_Q = 0$ となる y を求めると、  $y_0 = -0.52$  mm である。

一方、QM 補正コイル電流値変化による軌道変化 はリング全周に及ぶので、それぞれの BPM の位置 で Fig. 8 と同様のプロットを作り、オフセット値を 求めることが出来て、平均値  $y_0 = -0.51 \pm 0.03$  mm を 得る (Fig. 9) 。ただし、軌道の節の付近にある BPM は軌道変化が鈍くなり精度が悪化する。

上記の様にして、全 BPM の x, y 方向についてオ フセット値を求めた(Fig. 9, Fig. 10)。それぞれの 統計分布を Fig. 11 にプロットする。



Figure 7:  $y_{COD}$  vs. QM current  $I_Q$ . (a) bump ~ -4 mm, (b) bump ~ 0 mm, (c) bump ~ +4 mm.



Figure 8: y vs.  $\partial y / \partial I_O$  at BPM #130.



Figure 9: Offset values calculated with the all BPM response.  $y_0$  at BPM#130.



Figure 10: Offset values calculated with the all BPM response. (a)  $x_0 @BPM#159$ .

#### **PASJ2014-SAP088**

## 4. COD 補正

#### 4.1 補正結果

上記で得られた全 BPM の BBA オフセット値を、 BPM 処理プログラムに設定し、COD 測定を行った。 x 方向については $\Delta p/p$  (momentum dispersion) によ る変位を差引いた値を使用した。その結果を最小二 乗法により解析し、3 GeV~30GeV までの補正磁場 値求め STM に設定した。BBA オフセットを使用し ない場合の COD 補正結果を Fig. 12 に赤色で、今回 の BBA オフセット値を使用した補正結果を青色で 示す。各条件で、3ショット分の軌道 (それぞれ、 K1+91ms と K1+95ms (3 GeV) の2フレーム) を重 ね書きしたものである。x 方向では軌道のバラツキ のため違いが良くわからない。y 方向では、BBA オ フセットを使用することにより COD 補正が大幅に 改善していることが判る。

BBA オフセット値の無/有で、COD の RMS 値は 3 GeV では以下のように改善した:

| Plane | RMS (mm)      |      | RMS (mm, η-subtracted) |      |
|-------|---------------|------|------------------------|------|
|       | w/o BBA w BBA |      | w/o BBA w BBA          |      |
| х     | 0.41          | 0.30 | 0.33                   | 0.18 |
| у     | 0.39          | 0.15 | -                      | -    |

x 平面では、dispersion function  $\eta$ を通して入るシンク ロトロン振動 ( $\Delta p/p$ )、BM リップル ( $\Delta B/B$ ) の影響 (後述)を差引いた結果を、右列に記した。







Figure 12: CODs along the MR, corrected without / with the BBA offset data (red / blue lines, respectively).  $x_{COD}$ , (b)  $y_{COD}$ .

COD (RMS) の減少率は、 $\Delta p / p$ ,  $\Delta B / B$ の影響を差 引くと 45 %だが、全体では 27 %しかない。y 平面 では 62 %の減少率であり、ビームロスの低減という 好結果を得た。





Figure 13: RMSs of the orbit from 3 to 30 GeV. Corrected w/o (a), with (b) BBA offset. Upper : x plane, lower: y plane. Acceleration starts at 130 ms.

#### 4.2 残留 COD

BBA によるオフセット値を使用した COD 補正 結果で、一部 COD が残っている箇所が見受けられ た。垂直方向では、Insertion-C の#155 付近である。 この原因としては、#155 における STM の欠落が考 えられる。この箇所は Fast Extraction 部にあたり、 分岐するビームが大きく内側に曲げられるために、 アパーチャが 257mm と、非常に大きく設定されて いる<sup>[3]</sup>。STM は、空きスペースの制約のため、BPM を内包する設計となっている。このため特大 STM が必要となり、製作を保留して現在に至っている。

# 5. 位置データの吟味

### 5.1 x-COD のバラツキの原因

3.2 節で述べたように、 $x_{COD}$ のバラツキは ARC 部 で大きく、その $\sigma$ は momentum dispersion function の 絶対値 (Fig. 14) に比例しているように見える。た だし、大きさは均一ではない。



Figure 14: Absolute value of the dispersion function.

各 ARC 部は BM 32 台から構成されている。それ を前後 2 分割し、連続する 16 台を 1 台の電源に直 列接続している (Family)<sup>[6]</sup>。MR 全周で 6 family か ら成っている。1 family は achromat を構成している ので<sup>[7]</sup>、或る family の誤差磁場  $\Delta B/B$ は、その family の外側には影響しない。すなわち、運動量誤 差と BM 誤差磁場による軌道変位は、1 次近似で

$$x(s) = \left(\frac{\Delta p}{p}\right) \eta(s) + \sum_{k=1}^{6} \left(-\frac{\Delta B}{B}\right)_{k} \eta_{k}(s)$$

$$= \sum_{k=1}^{6} \lambda_{k} \eta_{k}(s)$$
(4)

と書くことができる。ここで、 $\eta$ は momentum dispersion function,  $\eta_k$  (k=1, ..., 6) は1 family 分の momentum dispersion function で、他の場所では 0 と なる s の関数である。7 個のパラメータ:  $\Delta p/p$ ,  $(-\Delta B/B)_k$ は未知数で、独立には求められな いので、6 個の未知数 $\lambda_k$ (k=1, ..., 6)を導入し、デー タにフィットすることにより求める。1 例を Fig. 15 に示す。赤線がデータ、青線がフィットの結果であ る。



Figure 15: Example of  $x_{COD}$  at K1+402ms. Red line:  $x_{COD}(402ms) - \langle x_{COD} \rangle$ , blue: fitted curve.

#### 5.2 バラツキの除去

5.1 節の方法で決定したフィット関数 Eq. (4)を用 いて、元の COD (<xcon>を差引いたもの)から dispersion function に依存する軌道のバラツキを差引 くと、残るバラツキは Fig. 16 の様に小さくなる。 この方法を、4.1 節での COD の改善についての評価 で使用した。

リップル成分  $\lambda_k(t)$ の周波数スペクトルは、Fig. 17 に示したようなものである。基本的に Fig. 6 で議論したように、シンクロトロン振動と BM リップルから成ると考えられる。6 family が同相で振動する成分を見るために、

$$\lambda_{com}(t) = \sum_{k=1}^{6} \lambda_k(t) / 6 \tag{5}$$

を計算したものが Fig. 17 中の黒線で示したものであ る。330 Hz 付近の振動は同相成分のみであり、シン クロトロン振動によるという予想と矛盾しない。 200 Hz 以下の同相成分もある。これは、リップルに も、6 family 全てが同相で発生している成分がある ことを示している。Eq. (4)では $\Delta p/p$ ,  $(-\Delta B/B)_k$ の同 相成分は区別しなかったが、上記のように周波数領 域で分離できると考えられる。



Figure 16:  $x_{COD} - \langle x_{COD} \rangle$ , succeeding 18 frames starting from K1+402ms, every 1 ms. Before (a) and after (b) subtracting the horizontal orbit motion due to  $\eta$ .



Figure 17: Frequency spectrum of the  $x_{COD}$  ripple,  $\lambda_k(t)$ . Colored:  $k=1, \ldots, 6$ . Black line: common mode.

## 6. まとめ

J-PARC MR 全周の BPM186 台の BBA を完了し、 各 BPM のオフセットを  $30 - 400 \,\mu m$  の精度で決定し た。この結果を使って COD 補正をおこなった結果、 y 方向では RMS 値で6割減少した。x 方向はシンク ロトロン振動と BM リップルのため3割程度の改善 であった。ビームロスの減少も観測された。

BBA でのオフセット算出では、位置データの平均 値を使っている。y 方向では位置精度~20-90 $\mu$ m (統計誤差 $\sigma$ )だが、x 方向では、位置精度~20-450  $\mu$ m(統計誤差 $\sigma$ )と大きいので、最終的に得られ るオフセットの誤差が大きい。この誤差は、BM family 毎に dispersion function を使ってバラツキを フィット・差し引くことで改善する可能性がある。

#### 参考文献

- [1] S. Machida, "Beam Loss in Rings", ATAC2005, Feb. 24, 2005.
- [2] M. Masuzawa et al., "Beam-based Calibration of Beam Position Monitors and Measurements of the Sextupole Magnet offsets at KEKB", Proc. of EPAC2000, (2000) 1780.
- [3] T. Toyama, et al., "Operating experiences of the J-PARC MR BPMs", Proc. of PASJ6, p. 250.
- [4] H. Kuboki, et al., "Results of Beam Based Gain Calibration for Beam Position Monitor at J-PARC Main Ring", In these Proceedings.
- [5] M. Tejima, Ph. D. thesis, Soken-dai, 2007, in Japanese.
- [6] S. Nakamura et al., "Improvement of the magnet-power supplies on J-PARC MR", 「加速器」 vol.6, No.4, 2009 (292-301).
- [7] S. Igarashi et al., "Nonlinear Dispersion and Chromaticity Measurement in J-PARC MR", Proc. of PASJ9, p.385.