PASJ2014-SAP061

広帯域 RF 合成器の設計・製作 DEVELOPMENT OF A WIDE-BAND RF COMBINER

金田 健一 *^{A)}, 水島 弘二 ^{A)}, 田辺 英二 ^{A)} Kenichi Kaneta^{* A)}, Mizushima Hiroji^{A)}, Eiji Tanabe^{A)} ^{A)}AET, Inc.

2-7-6 Kurigi Asao-ku, Kawasaki City, Kanagawa, 215-0033, Japan

Abstract

A S-band waveguide combiner/divider was designed for high-duty RF components. H-plane type was selected to make it a high-power device. The combiner operates for 2 port klystron used by SF6 (2.5 MW of peak power per port; 30 kW of average power). In order to reduce the maximum field intensity and surface current, sticking posts were closely attached to edges of its T-junction. 3D EM simulation was performed to accelerate the design process.

1. はじめに

2ポート出力(ポートあたりピーク出力 2.5MW; 平均 出力 30kW)のSバンドクライストロンのRF合成を今 回開発したSF6加圧で用いる導波管WR-284のT分岐 型の3ポート合成器で行った.大電力に耐える構造とし て知られているH-plane型を採用し,最大電界強度や表 面電流密度を低く抑えるために,調整用のポストを合成 部のエッジに密着させる構造とした.また,分岐点にポ ストを集中して配置したことにより,広帯域化を実現で きた.

今回の設計において、いくつかのモデルを提案し MW STUDIO^[1]を用いたシミュレーションを行った.その結果を比較検討することで、本論文の形状が非常に優れていることが分かった.

また,この形状は非常にシンプルなため,製作が大変 容易であった.加速装置実装後はピーク 5MW,平均電 力 60kW の大電力下で稼働している.本論文では,この RF 合成器の設計と製作,シミュレーション結果につい て報告する.

2. RF 合成器の設計

2.1 仕様

基本仕様を Table 1 に示す.

Table 1: Specifications of S-band Combiner

Frequency	2856MHz
Peak power	5MW
Waveguide	WRI-32 (WRJ-3)
Flange	CPR284

2.2 Vane 型合成器の設計

まず,仕切り板を用いた T 分岐型の合成器を検討した.その構造を Figure 1 に示す.仕切り板だけでは電気特性 (反射損失)が悪いので,今回は RF 出口側の導波管

をアイリス構造にした. Figure 2 から,その仕切り板が 薄いほど広帯域となることが分かる.

一方で Table 2 から, 仕切り板が薄いほど電流密度が 高くなることが分かった. 一般的に電流密度が高い箇所 は熱くなり放電が起きやすくなる. さらに, Figure 3 に あるように電流密度が高い箇所は仕切り板のエッジで, 冷却が難しい. よって, この Vane 型合成器は, レーダー などの低電力の装置には有効であるが, 大電力を扱う加 速器には適さないことが分かった.

Figure 1: Outline of vane-type combiner model.

Figure 2: Return loss at output port of vane-type combiners.

^{*} kaneta@aetjapan.com

PASJ2014-SAP061

Figure 3: Surface current of vane-type combiner injected with peak power 2.5 MW at each port with same phase.

Table 2: Simulated E-field and surface current maxima for vane-type combiners injected with peak power 2.5 MW at each port with same phase.

R [mm]	L [mm]	$\text{E-field}[\mathrm{MV}/\mathrm{m}]$	$\text{Current}[\rm kA/m]$
1	36.05	1.64	17.8
2	34.05	1.67	16.5
4	30.05	1.7	16.2

2.3 ポスト型合成器の設計

広帯域の合成器を造る上で,反射整合を取るためのポ ストは分岐点近くに持ってくることが好ましい^[2].今 回は電界強度をより下げるために円柱型のポストで補 正を行った (Figure 4).

製造工程としてはまず,円柱型ポストを3/4に切断し 扇形にする.その切断面に導波管を沿わすことで,T分 岐型導波管の製作が容易となった.

シミュレーションの結果を Figure 5 に示す. 3/4 円柱 ポストの径が小さくなるほど帯域が広いことが分かる. 先ほどの仕切り板の場合と同じようにポスト径が小さ いほど最大電流密度は高くなるが,仕切り板ほど電流密 度が高くならない (Table 3).

ポストをエッジ部に置くことの有意を示すために, Figure 6 の形状での電気特性を調べた. Figure 7 から 分かるようにポストが分岐点付近になければ狭帯域と なる. また,最大電界強度と最大電流密度はそれぞれ 1.71 [MV/m],11.68 [kA/m]であり,共に高くなる傾向 であった.電流密度が最も高いのは合成部のエッジで ある.

Figure 4: Outline of post-type combiner model.

Figure 5: Return loss at output port of post-type combiners.

Figure 6: Outline of comparison model.

3. 設計製作

20dB 以上の帯域が 358MHz となることから A=15 の ケースを採用し、Figure 8 の図面を作成した. ポストと 導波管をネジ止めハンダ付で接合したことで,ポストと 導波管の接触面に隙間ができづらくなった. 加工ミスが あり,中央のポスト位置が 3 [mm] RF 出力と逆方向に ずれてしまい,当初の特性は悪かったが,アルミナスタ ブで補正して 20dB 以上のリターンロスをとり直した. 出荷前の低電力試験結果と外観を Figure 9 と Figure 10 に示す.再補正した結果から,帯域が非常に広いことが 分かる.

Figure 7: Return loss at output port of post-type combiners. Comparison model's return loss shows narrower bandwidth.

Proceedings of the 11th Annual Meeting of Particle Accelerator Society of Japan August 9-11, 2014, Aomori, Japan PAS1201

PASJ2014-SAP061

Table 3: Simulated E-field and surface current maxima for post-type combiners injected with peak power 2.5 MW at each port with same phase.

A [mm]	B [mm]	PY [mm]	E-field $[MV/m]$	Current $[kA/m]$
11	8.3	27.85	1.63	9.18
13	10.6	25.27	1.71	8.64
15	14.3	21.75	1.81	8.07
17	22.2	15.75	1.94	7.37

Figure 8: Outline of post-type combiner.

File View Cha	nnel Sv	veep Cal	ibration	Trace S	cale Mark	er Syster	n Wind	low Help		
Math / Mem						Data>>I	Mem	Data / Mem	Data	Mem on/OFF
S11 10.00dB/ 0.00dB LogM	50.00 40.00	dB S11						1: > 2: 3:	2.851000 GH 2.856000 GH 2.851000 GH 2.851000 GH	29.046 dB 28.552 dB 28.112 dB 38.112 dB
1.000dB/ 0.00dB LogM	30.00							2:	2.856000 GH 2.861000 GH	8.0013 dB
	20.00									+
	10.00									
	0.00			-						
	-10.00						2 0 1	3		
	-20.00			-			2			
	-30.00						1	3		
	-40.00			-						
	-50.00 Ch1: Ch2:	Start 2.80 Start 2.80	000 GHz 000 GHz	=					Stop	2.90000 GHz 2.90000 GHz
Status CH 1	511			2-Port						IC

Figure 9: Measurement result of post-type combiner before shipment.

4. まとめ

さまざまな形状の合成器をシミュレーションすること で、帯域の広い合成器を作製する手法を得た.使用用途 に沿った帯域幅を選ぶことで電界強度や電流密度を低く し、より大電力化を図ることが出来た.また、製造工程 においてもより容易な形状が好まれるため、今回の合成 器は大変有用であると思われる.

参考文献

- [1] CST AG., https://www.cst.com/
- [2] Xin Jiangi., "TWO NEW KA-BAND TRAVELING WAVE POWER DIVIDER/COMBINER DESIGNS", A thesis submitted to the Graduate Faculty of North Carolina State University, 2001.

Figure 10: Picture of post-type combiner.