PASJ2014-SAOM02

フォトカソード RF 電子銃ライナックを用いたフェムト秒電子ビーム発生

GENERATION OF FEMTOSECOND ELECTRON BUNCHES USING A LASER PHOTOCATHODE RF GUN LINAC

野澤一太#, 菅晃一, 楊金峰, 小方厚, 近藤孝文, 神戸正雄, 法澤公寛, 小林仁, 吉田陽一

Itta Nozawa [#], Koichi Kan, Jinfeng Yang, Atsushi Ogata, Takafumi Kondoh, Masao Gohdo, Kimihiro Norizawa,

Hitoshi Kobayashi, Yoichi Yoshida

The Institute of Scientific and Research, Osaka University

Abstract

Electron beams with pulse durations of picoseconds and femtoseconds have been applied to the accelerator physics application such as free electron lasers and laser-Comptom x-rays. The ultrashort electron bunches are also key element in time-resolved measurements including pulse radiolysis to improve the time resolution of the measurements. In this study, femtosecond electron bunches were generated using a laser photocathode RF gun linac and a magnetic bunch compressor at ISIR, Osaka University. The bunch lengths were evaluated by detecting coherent transition radiation (CTR) emitted from the electron bunches using a Michelson interferometer.

1. はじめに

ピコ秒・フェムト秒電子ビームは、自由電子レ-ザー、レーザーコンプトン散乱、テラヘルツ光源な ど、加速器分野において多くの応用がなされている。 また、そのような極めて短い時間幅を有する電子 ビームは、パルスラジオリシス^[1,2]などの時間分解計 測手法の時間分解能を向上するために必要不可欠で あり、極短時間に電子ビームによって誘起される超 高速現象を解明するための重要なツールとなってい る。そのため、より高品質な光源の開発や時間分解 計測における時間分解能の向上のために、フェムト 秒電子ビームの発生が求められている。一方で、 フェムト秒電子ビームのパルス幅を測定するために、 電子ビームからのチェレンコフ光を観測するスト リークカメラ、電気光学結晶のポッケルス効果によ る複屈折を利用した EO サンプリング、RF 電場によ る軸方向電荷分布の径方向への投影を用いた偏向空 洞、コヒーレント放射におけるパルス幅と周波数ス ペクトルの関係を利用したフーリエ分光法など多く の高時間分解能を有するパルス幅測定手法が研究さ れている。

本研究では、阪大産研 S バンドレーザーフォトカ ソード RF 電子銃ライナックを用いて、フェムト秒 電子ビームを発生した。発生した電子ビームからの コヒーレント遷移放射 (CTR, coherent transition radiation)^[3]を、マイケルソン干渉計を用いて計測・ 解析することで電子ビームパルス幅を評価した。

2. 実験系

2.1 レーザーフォトカソード RF 電子銃ライナック

本研究では、Figure 1 に示す阪大産研の S バンド レーザーフォトカソード RF 電子銃ライナック^[4,5,6,7] を用いて超短パルス電子ビームを発生した。本ライ ナックは、1.6 セル S バンドレーザーフォトカソー ドRF電子銃、Sバンド進行波型線形加速空洞、磁気 パルス圧縮器から構成される。カソードの励起には、 フェムト秒 Ti:Sapphire レーザーの三倍高調波を使用 し、初期パルス幅の短い電子ビームを生成した。カ ソードへのレーザー入射角は~2°であった。電荷量 の測定には電流モニター (current transformer) を利 用した。空間電荷効果によるパルス幅の増大を低減 するために、電荷量はピコクーロンオーダーとした。 電子ビームは電子銃出口では~4 MeV、加速管出口で は~30 MeV まで加速されると同時に、加速管では磁 気パルス圧縮に適切なエネルギー変調がなされた。 磁気パルス圧縮器は、2台の偏向電磁石、4台の四極 電磁石、2 台の六極電磁石から構成されており、磁 気パルス圧縮器内での軸方向位相空間分布の回転に より、パルス圧縮がなされた。最終的に、圧縮され た電子ビームは、後述するパルス幅測定系に導かれ、 パルス幅測定を実施した。

Figure 1: Photocathode RF gun linac and magnetic bunch compressor. Q: quadrupole magnet, S: sextupole magnet, B: bending magnet.

2.2 パルス幅測定系

Figure 2 に本研究で使用したパルス幅測定系を示 す。ビームポートから出た電子ビームはアルミミ

[#]nozawa81@sanken.osaka-u.ac.jp

PASJ2014-SAOM02

ラー(M1)に入射した際に CTR により赤外光を放 射する。放射された赤外光は、非軸放物面鏡 (OAP1)、アルミミラー(M2,M3)によって伝播 され、マイケルソン干渉計へと導かれる。マイケル ソン干渉計では、ビームスプリッター(BS1)によ り、放射された赤外光は2経路に分けられ、一方は 固定鏡(M4)により反射され、もう一方は可動鏡 (M5)による光学遅延後に反射される。最終的に、 MCT (mercury cadmium telluride detector, P5274-01, 浜松ホトニクス)及びボロメータ (Infrared Laboratories)で2光束が合流し、インターフェログ ラムが計測される。本研究では、赤外光源(IRS-003C)を用いて、測定系全体の感度補正・最適化を 実施した。

Figure 2: (a) Measurement system using Michelson interferometer. M: mirror, OAP: off axis parabolic mirror, BS: beam splitter, MCT: photoconductive mercury cadmium telluride detector. (b) Pictures of the Michelson interferometer and the infrared light detectors.

2.3 解析モデル

本研究では、実験的に得た CTR のインターフェロ グラムに対して、解析的なモデルをフィッティング することにより、パルス幅を算出した。軸方向の電 荷分布としてガウス分布を仮定するとバンチ形状因 子 $F_b(\omega)$ は、以下の式(1)のように表される。

$$F_{\rm b}(\omega) = e^{-\sigma^2 \omega^2} \tag{1}$$

ただし、σ、ωはそれぞれパルス幅と角周波数である。 あらゆる周波数の電磁波に対して感度を持つ理想的 な測定系の場合、CTRの周波数スペクトルは式(1)に 従う。しかしながら、実験的には測定系の検出感度 は制限されるため、系の感度の考慮する必要がある。 本研究では、測定系の感度 S(ω)を以下の式(2)のよう に定義した。

$$S(\omega) = \frac{I_{\rm IRS}(\omega)}{B(\omega)} \tag{2}$$

ただし、 $I_{IRS}(\omega)$ は実験的に得た赤外光源の周波数ス ペクトル、 $B(\omega)$ はプランクの黒体輻射をそれぞれ表 している。実効的な CTR の周波数スペクトル $K(\omega)$ はバンチ形状因子と測定系の感度の積として記述す ることができるため、

$$K(\omega) = F_{\rm b}(\omega)S(\omega) = e^{-\sigma^2\omega^2}S(\omega) \tag{3}$$

となる。ゆえに、インターフェログラムの近似式 *k*(*τ*)は、式(3)の逆フーリエ変換により与えられ、

$$k(\tau) \propto \int K(\omega) e^{i\omega\tau} d\omega = \int e^{-\sigma^2 \omega^2} S(\omega) e^{i\omega\tau} d\omega \qquad (4)$$

となる。以下では、式(4)を感度モデルと呼ぶ。

3. 実験結果

3.1 赤外光源を用いた光学系の最適化

Figure 3 に真空中でボロメータと MCT を用いて計 測した赤外光源のインターフェログラムを示す。横 軸は、可動鏡の移動距離を光速で除し時間に換算し たものである。赤外光源から放射された赤外光は光 チョッパーよって 1 kHz に変調された後、ロックイ ン検出された。インターフェログラムはセンター バーストを中心として対称な形状をしており、減衰 振動が観測された。ボロメータに比べ MCT はより 高周波数の赤外光まで検出することができるため、 観測した高周波成分の寄与によって、センターバー ストの形状が急峻になることがわかった。

Figure 4 にインターフェログラムを離散フーリエ 変換することにより得た周波数スペクトルとプラン クの黒体輻射を示す。周波数スペクトルより、MCT は 11 THz から 50 THz までの広帯域な赤外光の検出 が可能であることがわかった。一方で、ボロメータ は 3 THz から 15 THz までの赤外光を検出可能であっ た。なお、比較のために、それぞれの検出器におけ る最大信号強度の 10%をカットオフ周波数として検 出周波数帯域を評価した。

Figure 3: Interferograms of the IRS measured using the bolometer and the MCT detector.

PASJ2014-SAOM02

Figure 4: Frequency spectra of the infrared light source obtained from measurements using the bolometer and the MCT detector, and spectral radiance according to Planck's law.

3.2 電子ビームパルス幅測定

Figure 5(a)にボロメータを用いて測定した CTR の インターフェログラムを、Figure 5(b)に MCT を用い て測定した CTR のインターフェログラムをそれぞれ 示す。曲線は式(4)により計算され、測定値に対して 最小二乗法でフィッティングされている。電子銃に おける加速位相は 15° であり、バンチの電荷量は 2.1 pC とした。また、加速管加速位相は 105°とし た。Figure 5(a)に示すように、ボロメータを用いて 測定した CTR のインターフェログラムに対して、感 度モデルをフィッティングすることにより、パルス 幅が 26 fs と求められた。一方、MCT を用いて測定 した CTR のインターフェログラムに対して、感度モ デルをフィッティングした際には、パルス幅が8.9fs と求められた。パルス幅の違いは、ボロメータおよ び検出器の周波数感度の違いによるものと考えられ る。すなわち、Figure 4 に示したように、MCT はボ ロメータに比べて高周波数の赤外光を検出可能であ るため、フェムト秒オーダーの電子ビームを計測す るために適切であると考えられる。しかしながら、 検出帯域の観点から、数十フェムト秒オーダーの電 子ビームの計測においては、ボロメータがより適切 である。また、計測したインターフェログラムのセ ンターバーストの左右に存在する減衰振動は、感度 モデルを用いて表現することが可能であることがわ かった。

Figure 5: Comparison of interferograms measured using (a) the bolometer and (b) the MCT detector.

4. 結論

異なる周波数帯域を持つ2つの検出器を備えたマ イケルソン干渉計を用いて、フォトカソード RF 電 子銃ライナックから発生した電子ビームの CTR を利 用した、電子ビームパルス幅測定を実施した。イン ターフェログラムの解析から、本手法が<10 fs の電 子ビームの計測に有効であることが示唆された。今 後は、より短パルスの電子ビームの発生を図るとと もに、アト秒パルスラジオリシスや集団励起効果の 実証などの応用研究へ展開する。

謝辞

大阪大学産業科学附属量子ビーム科学研究施設の 教員および職員の方々に実験装置の立ち上げや運転 においてご支援頂いた。また、本研究の一部は科研 費(21226022,23109507,25870404,26249146)により 支援頂いた。

参考文献

- [1] C. D. Jonah, Rev. Sci. Instrum. 46, 62 (1975).
- [2] J. Yang et al., Nucl. Instrum. Meth. A 629, 6 (2011).
- [3] P. Kung et al., Phys. Rev. Lett. 73, 967 (1994).
- [4] J. Yang et al., Nucl. Instrum. Meth. A 556, 52 (2006).
- [5] K. Kan et al., Nucl. Instrum. Meth. A 597, 126 (2008).
- [6] K. Kan et al., Appl. Phys. Lett. 99, 231503 (2011).
- [7] I. Nozawa et al, Phys. Rev. ST Accel. and Beams, 17, 072803 (2014).