

J-PARC核破砕中性子源における非線形 ビーム光学を用いたビーム拡大システム の開発

明午 伸一郎¹⁾,大井 元貴¹⁾, 圷 淳¹⁾, 池崎 清美¹⁾, 藤森 寛²⁾

1) JAEA/ J-PARC, 2) KEK/J-PARC

内容

● 背景

- 非線形ビーム光学による平坦化
- ●八極電磁石の概要とインストール
- ●ビームプロファイルの結果
 - シミュレーション計算との比較

J-PARCと物質・生命科学実験施設(MLF)

長さ 2m

34cm

2cm

7cm

SNS, US

4.2×10¹²4

3.8×10¹²

J-PARC

4.0×10¹²

ISIS-TS2, UK

- 大強度陽子ビーム(MW級)と人類との戦いの序章
 - ターゲット容器に著しい損傷:
 ビーム入射に伴うピッティング損傷
 - ビームのピーク電流密度が重要
 ターゲットのピッティング損傷 損傷∝ピーク⁴ (P4則)
 ラスタリングでは意味が無い 損傷∝(全面積/静止時面積)³
- JSNS: 世界的に見て過酷な条件
 JSNS:25Hz, シンクロトロン(RCS), ミュオン生成標的 有り
 SNS(ORNL): 60Hz, ストレージリング、 ミュオン生成標的 無し
- 💩 ピーク電流密度の減少は重要

ターゲット容器模式図

線形オプティクスでのビーム拡大

- RCSのビーム: 位相空間でガウス分布
 ピーク密度の減少:ビームをターゲット上で 拡大し密度を減少させる
- 発熱密度の計算:陽子ビーム窓の散乱

ビーム条件と無関係に1 W/ccの発熱

MWPMによる測定

周辺部発熱密度<1W/cc σ_{h、v} <37mm, 17mm 14 J/cc/pulse @1MWが下限 SNS(1MW)の~2倍 分布形状を変える必要がある

ピーク電流密度減少のため非線形ビーム光学によるビーム 平坦化技術を開発(八極電磁石を使用)

SAP066: 藤森氏 等

製作した八極電磁石

八極電磁石(800T/m³) 重量: 6 t, 両極性 O3060(幅1.2m,磁極長0.6m) 原理∶裾野のビームを高次の 磁場で中心に畳み込む

非線形ビーム光学

þ (m)

八極電磁石設置

- 八極電磁石設置(昨年7月)
 - OCT1,OCT2を3NBT及び M1トンネルに設置
 - ビーム位置モニタ(BPM)
 をOCT1,2に設置
 - 新規に補正電磁石を設置

<mark>遮へいブロック(M1トンネ</mark> ル)を開放しOCT2(水平用) を搬送

3NBTトンネルの最下流部 に設置したOCT1(垂直

八極励磁による効果

• 八極励磁により分布が平坦になることを確認

- 八極励磁の結果は実験の分布と良い一致を示す。
- ミュオンターゲット有り(ビームに照射)場合も再びガウス分布に 近づくものの実験は計算より影響は少ない

位相空間分布とプロファイル

ピークの挙動が実験と計算で異なる

- 計算: 八極励磁により分布を中心に曲げたために中心の ピークは上昇
- 実験:八極励磁に伴いピークが変更しなかったのは、実際のハローの強度は計算より少ないことが考えられる

- 八極励磁によりビームハローが大幅に減少
 - •計算通りに周辺部のビームが収斂
 - •約1/3倍となる。

▶ 周辺部の発熱密度も1/3となる

1MWにおけるプロファイルの予想

まとめ

- 八極電磁石を用いたオプティクスの設計方法を開発
 - 設計計算通り周辺部のビームを高次の磁場で収斂していることを確認
 - ピーク低減(設計値の40%)を達成できる見込み
 ⇒ ピッティング損傷を90%削減できる見込み
 - 中性子ターゲットステーションでの放射線量低下
 - MW級のハドロン加速器では世界最初の試み
 - 10月にはゴールとなる1MWの試験を実施予定
- 今後の課題
 - ミュオンターゲット上でのクーロン散乱の改良
 - 二次元オンライン型プロファイルモニタの開発