NIRS-930における加速位相の 調整について

独立行政法人放射線医学総合研究所 <u>北條 悟</u>、片桐 健、中尾 政夫、杉浦 彰則、野田 章

2014/8/9-11

第11回日本加速器学会年会 リンクステーションホール青森

目次

- NIRSサイクロトロン
- 位相プローブ
- 相対的位相測定による等時性磁場の調整
- ・理想的な加速位相
 絶対的な位相測定のために
- 加速位相の調整とビーム調整結果
- まとめ

Protons : $5 \sim 80 \text{ MeV}$ Heavy lons : $110 \times (Z^2 \swarrow A) \text{ MeV}$ Extraction radius : 0.92 msectors : 4 circular coil : 12harmonic coil : $2 \checkmark$ sector **RF** Dee system : $2 \frown \text{Dees} (86^\circ)$, Moving short type Frequency range : $11 \sim 21 \text{ MHz}$ Harmonic No. : 2 and 1**Vacuum** Pressure (in operate.) : 1×10^{-4} Pa Pumps : $1 \times 2000 \text{ L} \checkmark \text{ s} (\text{ Turbo molecular pump})$ $4 \times 10 \text{ inch} (\text{ Cryo pumps})$ **Injection** Axial injection : **Spiral inflector Ion souce** Axial injection : compact ECR (Kei-sourece)

電極 上下10対 計20個

電極サイズ 40×58 93×58 mm

上下電極間隔 50mm

使用ケーブル MX50-1.2 長さ2m

SHI製(原研高崎TIARAの位相プローブをベースに)

2014/8/9-11

第11回日本加速器学会年会 リンクステーションホール青森

トリムコイル磁場と位相プローブの位置

相対的な位相測定による等時性磁場の生成

2014/8/9-11 第

第11回日本加速器学会年会 リンクステーションホール青森

理想的な加速位相

考慮すべき位相(角度)差

1. サイクロトロン内部での位置での角 度差による位相差(θ₀)

2. 信号ラインでのライン長の差による 位相差(θs)

理想的な加速位相の測定のために

加速位相とビームの調整

 これまでは、あまり強度を出していなかった 34MeV Heliumで、強度を増強要求あり。
 RI生成用ターゲット位置で、20 μAの要求
 輸送効率を90%で考えると
 サイクロトロン取出し後で
 必要な強度は、22 μA

BEND DOV

Beam phase の調整 34 MeV Helium

位相調整によるビーム強度の変化

Beam monitor	調整前 [µA]	位相調整後 [μA]
Inflector	31.0	39.0
Main probe (R=100mm)	(13.4)	15.7
Extraction probe	15.0	17.0
Extracted beam	12.4	14.9
Beam loss at Septum electrode	2.2	2.15

Main Probe: A Main radial probe set at the radial position of 100 mm. The detected current at the main radial probe decreases in pre-optimized data, where the main radial probe was affected by insulation failure in this probe head.

Extraction probe: The beam probe at deflector entrance.

位相調整による ビーム効率の変化

Efficiency	調整前	位相調整後
Main probe (R=100) /Inflector	43.2%	40.3%
Extraction probe /Inflector	48.4%	43.6%
Extracted beam / Extraction probe	82.7%	87.8%
Beam loss at septum electrode /Extracted beam	17.7%	14.4%

理想的な加速位相にあわせるために・・・。

入射条件調整後のビーム強度

Beam monitor	調整前[μA]	位相調整後[μA]	入射調整後[μA]
Inflector	31.0	39.0	51.3
Main probe (R=100mm)	(13.4)	15.7	24.6
Extraction probe	15.0	17.0	25.0
Extracted beam	12.4	14.9	22.3
Beam loss at Septum electrode	2.2	2.15	2.5

Main Probe: A Main radial probe set at the radial position of 100 mm. The detected current at the main radial probe decreases in pre-optimized data, where the main radial probe was affected by insulation failure in this probe head.

Extraction probe: The beam probe at deflector entrance.

入射条件調整後のビーム効率

Efficiency	調整前	位相調整後	入射調整後
Main probe (R=100) /Inflector	43.2%	40.3%	48.0%
Extraction probe /Inflector	48.4%	43.6%	48.7%
Extracted beam / Extraction probe	82.7%	87.8%	89.2%
Beam loss at septum electrode /Extracted beam	17.7%	14.4%	11.2%
		CH1 Puller Dee	Magnetic channel Dee CH2

Extracted beam

入射条件調整後のターンパターン 34 MeV Helium

入射条件調整結果

まとめ

- 相対的な位相測定より、等時性磁場の成形を行った。
- 絶対的な位相に対する測定を行い、理想的な加速位 相への調整を行い、±10度以内にすることができた。
- 中心磁場を調整するとともに、入射条件を調整することにより、ビーム強度を上げ要求に応えることができた。 34MeV He 20 µA

- Garren and Smith methodや、加速周波数のスキャンによる位相測定方法との比較確認。
- 他のビームにおける位相測定および調整。
- 中心領域での位相や振る舞い、設定パラメータの確認。