筑波大学マルチタンデム加速器施設における6 W タンデム加速器システムの導入状況

INSTALLATION STATUS OF THE 6 MV TANDEM ACCELERATOR SYSTEM AT THE UNIVERSITY OF TSUKUBA, TANDEM ACCELERATOR COMPLEX

笹 公和^{#, A)}, 石井 聡^{A)}, 大島弘行^{A)}, 木村博美^{A)}, 高橋 努^{A)}, 田島義一^{A)}, 大和良広^{A)}, 関場大一郎^{A)}, 喜多 英治^{A)}

Kimikazu Sasa ^{#, A)}, Satoshi Ishii^{A)}, Hiroyuki Oshima^{A)}, Hiromi Kimura^{A)}, Tsutomu Takahashi^{A)}, Yoshikazu Tajima^{A)},

Yoshihiro Yamato^{A)}, Daiichiro Sekiba^{A)}, Eiji Kita^{A)}

^{A)} Tandem Accelerator Complex, University of Tsukuba (UTTAC)

Abstract

A new tandem accelerator facility has been designed and constructed at the University of Tsukuba after the Great East Japan Earthquake. The accelerator system consists of the 6 MV Pelletron tandem accelerator, four negative ion sources, a Lam-shift polarized ion source, a vertical irradiation line and 12 beam lines. A high energy beam transport line is connected from the accelerator room to present experimental facilities at the experimental room. The 6 MV tandem accelerator system will mainly be applied for AMS, IBA, heavy ion irradiation and nuclear physics. A high-voltage test was already tried with a great deal of success at the National Electrostatics Corp. (NEC), USA in January, 2014. The main accelerator tank was installed at the University of Tsukuba on 6 March, 2014. At present, we have constructed ion sources and beam lines. The accelerator operation will start for fall 2014.

1. はじめに

筑波大学研究基盤総合センター応用加速器部門 (UTTAC)では、1 MV タンデトロン加速器の他に、 2012 年度に導入した高分解能イオン散乱装置 (1 MV)が稼働している。その他、放射性同位元素利用 機器として、陽電子消滅実験装置、57Fe メスバウ アー分光装置の維持管理をおこなっている。2013年 度の加速器施設の年間利用時間は 2,064 時間であり、 前年度比で 125%であった。文科省補助事業「先端 研究基盤共用・プラットフォーム形成事業」[1]での 「マルチタンデム加速器施設の学術・産業共用促進 事業」では、648 時間の施設利用実績があり、計 12 件の産業・学術共用実験が実施された。筑波大学 UTTAC では、2011 年の東日本大震災により主加速 器である 12UD ペレトロンタンデム加速器が損壊し た^[2]。しかし、震災復興計画により米国 National Electrostatics Corp. (NEC)製のペレトロン型6MVタン デム加速器の導入が決定している[3]。その他、筑波 大学 UTTAC では、文科省補助事業の高度化設備と して宇宙用素子照射装置、マイクロビーム装置、全 自動放射性炭素試料処理装置、CO2 ガス導入型 MC-SNICS などの導入が認められている。ここでは、筑 波大学 6 MV タンデム加速器システムの導入及び整 備の現況について報告をおこなう。

2. 6 MV タンデム加速器の概要

筑波大学6 MV タンデム加速器システムは、12UD ペレトロンタンデム加速器の更新加速器として、3 か年計画で建設を進めている。なお、12UD ペレト ロンタンデム加速器は、2012 年に放射線発生装置の 登録を解除してシャットダウンしている。 6 MV タンデム加速器本体は、旧 12UD ペレトロン タンデム加速器の第 2 測定室(23.6 m×14.5 m)を改装 して設置する。なお、新加速器の建設に伴い、第 2 測定室は加速器室に名称を変更している。6 MV タ ンデム加速器システムには、4 台の負イオン源とラ ムシフト型偏極負イオン源、5 本の新設ビームライ ンと既存の 7 本のビームライン及び垂直照射ライン が設置される。Figure 1 に筑波大学 6 MV タンデム 加速器システムの全体図を示す。加速器本体は、米 国 NEC において設計・開発が行われた。なお、2014 年 1 月に米国 NEC において加速電圧試験を実施し、 6 MV の加速電圧を達成している。

6 MV タンデム加速器の搬入及び設置作業

3.1 加速器本体搬入作業

6 MV タンデム加速器本体は、2014 年 1 月末に米 国 NEC から発送されて、日本には船便で輸送された。 筑波大学には、2014 年 3 月 6 日に大型トレーラーに 搭載して搬入された(Figure 2)。加速器本体は、60 ton ラフタークレーン車を2 基使用して架台に設置後 (Figure 3)、重量物運搬電動コロ台車を4 台使用して 加速器室に搬入した(Figure 4)。なお、加速器導入に 併せて施設改修工事を実施しており、全長8.8 m、直 径 2.7mの加速器本体を室内に導入するために、加速 器室搬入口の拡張工事が行われた。また、偏極イオ ン源実験棟が新たに建設され、施設9 階に設置され ていたラムシフト型偏極イオン源を移設した。 Figure 5 に加速器室に設置された 6 MV タンデム加速 器本体の写真を示す。 Proceedings of the 11th Annual Meeting of Particle Accelerator Society of Japan August 9-11, 2014, Aomori, Japan

PASJ2014-FSP007

Figure 1: Layout of the 6 MV tandem accelerator system at the University of Tsukuba.

Figure 2: Transportation of the accelerator tank by a heavy equipment trailer truck.

Figure 4: Location movement of the accelerator tank by electric movable carriages.

Figure 3: Installation operation of the accelerator tank on the support.

Figure 5: The accelerator tank located at the accelerator room at UTTAC (6 March, 2014).

PASJ2014-FSP007

3.2 6 MV タンデム加速器の組み立て状況

6 MV タンデム加速器システムは、現在、ビーム ライン、イオン源及び SF₆ ガス回収装置等の据付及 び調整作業を実施している。また、現在までに加速 器室空調設備の更新、制御室の改修、SF₆ 貯蔵タン ク設置等がおこなわれた。2014 年末頃までにビーム 供給を開始する予定であり、ビームライン等の組み 立て作業も最終段階にきている。Figure 6 に現在の 6 MV タンデム加速器本体の写真と Figure 7 に加速器 室の全景を示す。

Figure 6: Photograph of the 6 MV tandem accelerator tank at the accelerator room (August, 2014).

Figure 7: Panoramic photograph of the accelerator room (August, 2014).

3.3 低エネルギービーム輸送ライン

6 MV タンデム加速器の低エネルギー側の磁場強 度は ME/q² = 15 であり、90°偏向電磁石は加速器質 量分析に対応して逐次入射法が行える。180°回転 が可能な曲率半径 200 mm、電極間隙 35 mm の 3 台 の 90° ESA (Electrostatic Spherical Analyzer)が設置さ れている。負イオン源としては、40 試料を装填可能 な加速器質量分析用 Cs スパッタ負イオン源(MC-SNICS)が2台、He用RF 負イオン源(Alphatross)、大 電流イオン用 Cs スパッタ負イオン源(SNICS II)の 4 台を設置している。2台のMC-SNICSのうち1台は、 極少量の試料からの炭素14年代測定研究に対応可能 な CO₂ガス導入型であり、¹⁴C-AMS 測定を CO₂ガス 試料から直接測定可能なシステムとなっている。 Figure 8 に負イオン源の配置図、Figure 9 に現在のイ オン源装置群と低エネルギービーム輸送ラインの写 真を示す。

Figure 8: Layout of the low energy beam transport and ion sources.

Figure 9: Photograph of the ion sources (August, 2014).

3.4 ラムシフト型偏極イオン源

平成25年度末に偏極イオン源実験棟(12×5m²)が、施設1階に完成した。施設9階において震災により 損壊したラムシフト型偏極イオン源は、修復して実 験棟に移設し、6 MV タンデム加速器に接続される。 Figure 10 に新たに建設された偏極イオン源実験棟の 写真を示す。また、Figure 11 には偏極イオン源実験 棟の概略図を示す。現在、偏極イオン源の組み立て 作業をおこなっている。偏極イオン源実験棟からの 偏極イオン生成及び6 MV タンデム加速器への入射 は、2014年末頃を見込んでいる。

Figure 10: Photograph of the Polarized Ion Source room.

Proceedings of the 11th Annual Meeting of Particle Accelerator Society of Japan August 9-11, 2014, Aomori, Japan

PASJ2014-FSP007

Figure 11: Layout of the Polarized Ion Source room and the low energy beam transport.

3.5 6 MV タンデム加速器システムの研究利用分野

Figure 1 で示した 6 MV タンデム加速器の各ビームコースでは、以下の研究利用が想定されている。

1)加速器質量分析法 (AMS): S2 ライン

Figure 12: Photograph of the AMS line (S2 line).

加速器により放射性核種を1個単位で計測可能で あり、同位体比10⁻¹⁵レベルの超高感度分析を実施

- する。Figure 12 に AMS 装置の写真を示す。
 - ① 宇宙線生成核種による地球環境年代測定.
 - ② 原子力施設環境モニタリング.
 - ③ 文化財・考古学分野の年代測定.
 - ④ ¹⁴C-AMS による創薬試験・食品産地同定.
- 2) ナノ材料物質分析: S5 ライン

Figure 13: Photograph of the IBA line (S5 line).

ナノデバイスの構造解析・微量元素組成分析をお
こなう。Figure 13 に IBA 装置の写真を示す。

- ① イオンチャンネリング法による物質構造解析.
- ② 重イオンラザフォード散乱による重元素分析.
- ③ 水素顕微鏡:デバイス中の水素 3 次元マップ.
- ④ 半導体デバイスの特性改善.

3) 重イオンビーム照射ナノ加工: N3, S4 ライン

高エネルギー重イオン照射により、ナノサイズの 穴開け、3次元ナノ加工を実施する。

- ① 有害物質センサー、フィルターの開発.
- ② 光導波路の改質.

4) 宇宙環境実験: S4 ライン

宇宙放射線環境を模擬する (Figure 14)。

- ① 人工衛星用半導体素子の放射線耐性試験.
- ② 宇宙線観測衛星の検出器校正試験.
- ③ 宇宙線による雲粒形成の模擬実験.

Figure 14: Photograph of the irradiation test equipment for space-use devices (S4 line).

- 5) イオンビーム物質分析法: S3, S5, N4 ライン
 - ① 高エネルギー陽子線を用いた水素分析
- ② マイクロ PIXE 分析による地球科学試料分析
- 6) 生物·細胞照射: 垂直照射室
- 7) 原子核実験:N6,N7 ライン

4. まとめ

6 MV タンデム加速器システムは、2014 年内から の運用開始を予定している。既存実験装置である偏 極イオン源、大型汎用真空槽、原子核実験装置など も活用する予定であり、高精度な多核種 AMS 測定 やイオンビーム分析、原子核実験が可能となる。ま た、筑波大学 UTTAC では、文科省「先端研究基盤 共用・プラットホーム形成事業」に採択されており、 6 MV タンデム加速器を用いた学外機関及び産業界 の加速器利用研究を積極的に推進する予定である。

参考文献

- [1] http://kyoyonavi.mext.go.jp/
- [2] 笹 公和, 日本加速器学会誌「加速器」, Vol.9(1), 2012, 14-21.
- [3] Kimikazu SASA, AIP Conf. Proc.1533, 184-188, 2013.