PASJ2014-FSP005

放医研のサイクロトロン NIRS-930 と HM-18 現状報告 THE CURRENT STATUS OF NIRS-930 AND HM-18 IN NIRS

北條 悟^{#, A)}, 片桐 健^{A)}, 中尾政夫^{A)}, 杉浦彰則^{A)}, 野田 章^{A)}, 岡田高典^{B)}, 髙橋勇一^{B)}, 井 博志^{B)}, 野田耕司^{A)}

Satoru Hojo^{#, A)}, Ken Katagiri ^{A)}, Masao Nakao ^{A)}, Akinori Sugiura ^{A)}, Akira Noda ^{A)},

Takanori Okada^{B)}, Yuichi Takahashi^{B)}, Hiroshi Ii^{B)}, Koji Noda^{A)}

^{A)} National Institute of Radiological Sciences

^{B)} Accelerator Engineering Corporation

Abstract

The cyclotron facility at National Institute of Radiological Science (NIRS) consists of a NIRS-930 cyclotron (Thomson-CSF AVF-930, Kb=110 MeV and Kf=90 MeV) and a small cyclotron HM-18(Sumitomo- Heavy- Industry HM-18, K=20 MeV). The NIRS-930 has been used for production of radio-isotope (RI) for molecular imaging. The other purposes of NIRS-930 were research of physics, developments of particle detectors in space, research of biology, and so on. The annual total operation time of NIRS-930 in last year was 1791 hours. The High intensity beam operation such as 75 MeV 10 μ A helium and 30 MeV 20 μ A protons for production of RI. Therefore, beam viewer is being developed for high intensity beam. The HM-18, that is a fixed energy negative-ion accelerator, has been providing 18 MeV protons and 9 MeV deuterons in order to produce short-lived radio-pharmaceuticals for PET. The annual total operation time of HM-18 in last year was 1766 hours. In the two cyclotrons, the beam stop time by failure in last year was extremely short.

1. はじめに

放射線医学総合研究所 (NIRS) には、2台のサ イクロトロンが設置されており、RI の製造を主目 的として稼動している。1 台は、NIRS-930 (Thomson-CSF AVF-930, Kb=110 MeV and Kf=90 MeV) で、1974 年に速中性子線を主目的として運 転を開始し、その後陽子線治療を経て、現在の RI 製造が主目的となっている。もう1台は、RI 製造 専用のHM-18 (Sumitomo Heavy Industry 製 K=20) である。HM-18 は、1994 年に HIMAC (Heavy ion Medical accelerator in chiba) による重粒子線治療が 始まるのにあわせて、PET 診断薬の製造専用として、 NIRS-930 と同じ部屋に設置された。

2 台のサイクロトロンは、平日昼間のみ運転を 行っている。マシンタイムとしては、4 月から 8 月 を第 1 期、9 月から 3 月を第 2 期として、8 月と 3 月にそれぞれ二週間程度のメンテナンスのための停 止期間を設けている。これに加え、NIRS-930 では マシンタイム要望を充たすために月に 1 回程度、土 曜日の運転を行っている。

2. 運転状況

2.1 NIRS-930 の運転状況

NIRS-930 の 2013 年度の年間運転時間を Table.1 に示す。運転計画時間は、配分されたマシンタイム 日数から1日の予定運転時間を9時から17時まで の8時間運転として算出した時間である。その 2013 年度の年間合計は、1634 時間であった。これ に対し、実際の年間運転時間は、1790.8 時間であっ た。それぞれのマシンタイムにおいて、予定時間か らの延長が多く見られた。まず、主目的である RI 製造用のマシンタイムにおいては、薬剤提供時刻と 照射時間の関係からの早朝運転開始や、金属ター ゲットの長時間照射のために 19 時程度までの照射 が行われた。また、R&D や、その他物理実験等で も、ユーザーからの要求により、1.2 時間の延長を 実施しているため、実運転時間が多くなっている。 全体の運転時間の7割以上を占める1350.0時間が マシンタイムとして利用され、残りの 459.1 時間が R&D や、要求強度に向けての取出し効率の改善な どの調整運転に用いられた。マシンタイム利用の中 では、およそ 6 割の 791.3 時間が RI 製造に利用さ れた。そのほかには、原子核物理の研究に 269.6 時 間、有償の耐放射線試験が 136.1 時間、耐放射線研 究が 32.3 時間、生物研究が 45.3 時間、放射線計測 に関する研究が 32.3 時間となっている。また、装 置の故障によるマシンタイムの中止や、30 分以上 の供給遅延等は無く、機器故障としては、トリムコ イル電源の故障が生じたが、予備電源に切替て対応 を行ったため停止時間は非常に短く 0.2 時間の停止 のみであった。

年間運転時間においての各粒子における割合を、 Figure 1 に示す。多くの時間が陽子に用いられてお り、全体の 74%を占めている。そのほかには、水素 分子 2%、重陽子 4%、ヘリウム 15%、炭素 1%、 酸素 3%、ネオン 1%となっている。

陽子の利用内容では、RI 生産や、宇宙環境を模した耐放射線試験等と様々で、利用されるエネル

[#] s_hojo@nirs.go.jp

PASJ2014-FSP005

ギー範囲も広くなっている。陽子のエネルギー範囲 ごとの運転時間を Figure 2 に示す。ここで、各エネ ルギーでの運転時間において、使用目的として、 ビーム調整、RI 製造、その他物理実験などに分け て示す。陽子の低エネルギーでは、RI 製造での利 用が多く、また、要求されるビーム強度が高いため、 取出し効率改善などのために調整運転も比較的多く 行われている。一方、高いエネルギーでは、物理実 験や耐放射線試験などの RI 製造以外の利用が行わ れているのがわかる。

Table 1: Annual O	peration Time of the	NIRS-930	(2013)
			(/

Planned time of operation	1634.0 h	
Operation time Total	1790.8 h	
1. Experiment	1350.0 h	
2. Tuning operation and machine studies	459.1 h	
3. Unscheduled beam stop by failure	0.2 h	
1.Experiment summary		
RI productions	791.3 h	
Nuclear and atomic physics experiments	269.6 h	
Radiation damage tests (with charge beam time fee)	136.1 h	
Studies on radiation damaged	32.3 h	
Biological experiments	45.3 h	
Studies on radiation dosimeters	32.3 h	
3. Unscheduled beam stop by failure		
Power supply for trim coils	0.2 h	
Beam stop time / Operation time	0.01%	

Figure 2: The operation time of proton beams.

2.2 HM-18 の運転状況

HM-18 の 2013 年度の年間運転時間を Table.2 に 示す。95%以上が陽子による RI 生産が行われてお り、3%で重陽子による RI 生産が行われている。故 障による停止は、フォイルストリッパーの駆動機構 の故障による 4.5 時間と、ヒューマンエラーによる 1 時間の停止時間となっている。フォイルストリッ パーの駆動機構の故障において故障内容としては軽 微なものであったが、同室に設置されている NIRS-930 において RI 製造用の高強度での長時間照射中 であったため、復旧対応作業ができずに 4.5 時間の 停止となってしまった。

Table 2: Annual Operation Time of the HM-18 (2013)

Planned operation time for RI production	1566.0 h	
Operation time Total	1766.1 h	
1. Protons used RI productions	1699.5 h	
2. Deuterons used RI productions	53.9 h	
3. Tuning operation and machine studies	12.7 h	
4. Unscheduled beam stop by failure	5.5 h	
4. Unscheduled beam stop by failure		
Stripping foil movement system	4.5 h	
Human error	1.0 h	
eam stop time / Operation time	0.3%	

3. 改良·開発

3.1 高強度対応ビームビュアーの開発

NIRS-930 では、高強度での長時間照射が多く なってきている。このような照射のターゲットは、 主に金属が用いられている。金属をターゲットとし た場合、発熱密度が高くなってしまうと、ターゲッ トが溶融する可能性があるので、ビーム強度のみで はなく、ビームのサイズや分布も重要となってくる。 そこで、蛍光板をもちいて、二次元的にビーム形状 と分布を確認することとした。一般的なアルミナ蛍 光板には 1µA 以下の低いビーム強度のビームしか Proceedings of the 11th Annual Meeting of Particle Accelerator Society of Japan August 9-11, 2014, Aomori, Japan

当てることができない。高いビーム強度を当ててし まうと、アルミナに焦げ付きや溶融、割れが生じた りして使用不能となってしまう。そのため、ビーム の形状や分布を確認する際には、入射するビーム強 度を下げて、ビーム形状や分布の確認を行う必要が あった。しかしながら、金属ターゲットを照射する 場合の入射エネルギーは 10 keV 以下で、強度は 200 uA 程度の強度を入射しており、空間電荷効果 の影響が大きい。そのため、強度を下げることによ り、ビームのサイズや分布に変化が生じる恐れがあ る。そのため、高強度のビームに対応できるビーム ビュアーの開発を行っている。これまで、厚さが 3-5mm 程度のアルミナ板を用いていたが、水冷が可 能な銅板にアルミナ 0.1 mm の薄い層を作ることに より、アルミナ中での発熱量を少なくし、溶融や割 れを防ぐ構造とした。

製作した冷却式アルミナモニターを 18 MeV 陽 子ビームを照射して蛍光テストを行った。まず、こ れまでの厚さのアルミナモニターでの使用範囲であ る 300 nA のビーム電流での確認をおこなった (Figure 3)。この強度ではこれまでの厚さでは、 蛍光が強すぎて、確認が困難な状態であったが、冷 却式では、ビーム形状と分布を確認することができ た。照射後のアルミナ表面を Figure 4 に示す。表面 の色の変化はあるが、蛍光には問題なかった。更に ビーム電流を10倍の3 µA での蛍光を確認した。結 果を Figure 5 に示す。ビーム分布確認するための蛍 光量として充分な蛍光が確認できており、熱による 損傷も無いことが確認できた。しかしながら、目標 とする 20 µA では、発光量が多すぎることが懸念さ れるため、今後更にエネルギーや強度を上げてのテ ストを実施するとともに、30 MeV 陽子で、20 μA 時にビームサイズや、分布などが確認できること目 標とし、更なる改良を行う予定である。また、画像 をモニターする際にも、CCD を用いると放射線に よる損傷が激しいためファイバースコープを用いる などの対策を講じる必要がある。

Figure 3: Photo of beam viewer test at 300nA proton 18MeV.

Figure 4: Photo of beam viewer after the test at 300nA proton 18MeV.

Figure 5: Photo of beam viewer test at 3 μ A proton 18MeV.

3.2 ビーム位相の測定および調整[1]

これまでのビーム位相の測定は、等時性磁場を形成するために、サイクロトロンの半径の内側から外側までの相対的な位相の測定を行い、等時性磁場の 形成を行ってきた。しかし、相対的な位相の測定の みでは、理想てきな加速位相への調整は不可能であ る。そこで、加速高周波(Dee 電圧)のピックアッ プ波形との比較を行い、理想的な加速位相への調整 を行った。その結果をもとに、さらに、入射の調整 を加えることにより、ユーザーからの要求強度を充 たしていなかった 34 MeV ヘリウムの強度を、要求 を充たす強度まで高めることができた。

3.3 3次元シミュレーション[2]

3 次元シミュレーションにより、ビーム挙動を理 解し、最適なパラメータを調整することによ、ビー ムの質の向上や強度増強を目指しシミュレーション を行っている。例えば、18 MeV 陽子での取出し効 率や、ビーム位相とビーム損失場所の確認などを行 い、ビーム調整へ活用している。また、強度の大幅 な増強の検討を行うために大強度化のシミュレー ションも行われている。

PASJ2014-FSP005

3.4 RI 生成用新ビームラインの設計[3]

医療放射性核種の製造に加え、^{10/11}C ビーム生成 を背景とした^{10/11}C を含むメタン分子(^{10/11}CH₄)の 生成実験のため、速中性子治療が行われていたビー ムラインを改良し、新たなビームラインの設置が計 画されている。^{10/11}C ビーム生成用の^{10/11}CH₄のター ゲットは熱により溶解しやすいため、適切な電流密 度での照射野を形成する必要がある。そのため、 NIRS-930 からのビームエミッタンスを測定し、適 切な照射野を形成するためのビームラインの設計を 行った。

4. まとめと今後

運転開始より 40 年以上がたつ NIRS-930 と、20 年がたつ HM-18 は、トラブルなどによる大きな停止もなく、それぞれ 1790.8 時間と 1766.1 時間の運転を行った。運転スケジュールが昼間のみのため、 多くの場合に延長運転が行われており、計画時間より多く運転時間となっている。

改良開発においては、高強度でのビームプロファ イルモニターの開発を行っており、現在、数μAで ビームプロファイルがモニターできている。さらに 高い強度への対応を進めていく予定である。また、 ビーム位相の測定やシミュレーションによる検討を 基にしたビーム調整によりビームの質の改善を行う ことができた。

今後、新たなビームラインの設置や、さらにシ ミュレーションをベースとしたサイクロトロンの高 強度化をめざし、高調波バンチャーや、新たな取り 出し系などの検討を行いつつ、老朽化に対する対策 も随時実施していく必要がある。

参考文献

- [1] S. Hojo, Proceedings of this conference. MOOM03
- [2] M. Nakao, Proceedings of this conference. SUP012
- [3] K. Katagiri, Proceedings of this conference. SUP118