可視光ビームモニターライン初段ミラーの熱変形補償 CANCELLATION OF THERMAL DEFORMATION EFFECT OF THE INITIAL MIRROR ON THE BEAM PROFILE MONITOR LINE

松本卓也 *^{A)}、小林花綸 ^{A)}、庄司善彦 ^{A)}、皆川康幸 ^{B)}、竹村育浩 ^{B)}

Takuya Matsumoto*^{A)}, Karin Kobayashi^{A)}, Yoshihiko Shoji^{A)}, Yasuyuki Minagawa^{B)}, Yasuhiro Takemura^{B)}

^{A)}Laboratory of Advanced Science and Technology for Industry, University of Hyogo

^{B)}Japan Synchrotron Radiation Research Institute

Abstract

The electron storage ring NewSUBARU has a visible light beam monitor line SR5. The two dimensional beam image obtained on this line is used in various beam diagnostics, such as a streak camera and a gated ICCD camera. One problem of this line was a stored current dependence of its imaging property. This was due to the mirror deformation produced by a heat load of synchrotron radiation. The effect of this deformation is approximated by a defocusing function in the lowest order. A simple defocusing can be handled by an adjustment of the assumed beam image position. However, the deformation was different for the horizontal and vertical directions. We installed a weak cylindrical lens to eliminate this difference. The current dependent imbalance of the deformation was cancelled by changing location of the lens according to the prediction. We succeeded to obtain a good two dimensional beam image at any electron beam energy and stored current.

1. はじめに

NewSUBARU の可視光ビームプロファイルモニター ライン SR5 で使われている初段ミラーは、KEK の基本 設計によるベリリウムミラーである。ミラー面の大き さは 96 mm × 30 mm で、背面には銅の冷却水パイプが 一面に銀ローづけされた構造である [1]。このラインに は放射光マスクが設置されておらず、放射光の熱負荷に よってミラーが変形する。ベリリウムミラーが吸収する 放射光の分布は垂直方向に不均一であり中央に集中し ているため、ミラー面の中央部の熱膨張が大きい。以前 のハルトマンマスクを使った測定によれば、この変形の 影響は、ほぼ defocusing で表現出来る。電子エネルギー 1.5 GeV、蓄積電流 200 mA の電子ビームに対する熱変 形は、焦点距離がそれぞれ水平 200 m、垂直 40 m の凸 面鏡相当であった [2]。実際にこの変形によって、ビー ムプロファイルの結像位置が蓄積電流依存をもち、2次 元プロファイル測定時の問題となっている。このライン には通常の CCD カメラの他に、ICCD ゲートカメラや ストリークカメラが設置されて、様々な用途のビームプ ロファイルモニターとして使われており [3,4]、簡単な ミラー変形の補償が望まれていた。

我々は、補正レンズとしてラインに弱い(f=1m)垂 直方向シリンドリカル凸レンズを設置することで垂直方 向の集束を調整し、この結像位置のズレを修正すること にした。利用運転エネルギーである1.5 GeV と1.0 GeV でビームイメージ結像位置の蓄積電流依存を予め計測 しておき、これを補償する補正レンズの位置を計算し た。蓄積リングの電子エネルギーと蓄積電流に応じて、 予め計算された位置に補正レンズを移動させることで、 どのような状況でも水平と垂直の結像位置を一致させ る事ができるはずである。この考えに基づき、SR5の 光学レンズ系の調整を行った結果について報告する。 Figure 1 にビームライン SR5 の光学設計を示す。偏向 電磁石からの光はまずベリリウムミラーで反射され、石 英窓を通して大気中に導かれる。さらに焦点距離 f =1.8 mの石英凸レンズで集束され、放射線遮蔽外へと導か れる。各種モニターカメラは、遮蔽外の光学定盤上に設 置されている。補正レンズはこの定盤上に置く。このレ ポートでは、ライン上の位置を表す座標を ℓとし、石英 凸レンズの位置を原点にとる。ℓ軸上の要素間の距離を 表すパラメーターとして以下を扱う。

- *ℓ_{SB}* :光源 ベリリウムミラー 間の距離。
- ℓ_{BL} :ベリリウムミラー 石英凸レンズ 間の距離。
- *ℓ_{LF}*:石英凸レンズ 集束点 間の距離。
- *ℓ*_{LC}:石英凸レンズ 補正レンズ間の距離。
- *ℓ_{CF}*:補正レンズ 集束点 間の距離。

更に、集束力を表す焦点距離として以下を使う。

- *f_B*:ベリリウムミラーの熱変形を近似した defocusing の焦点距離。
- f_L:石英凸レンズの焦点距離。
- *f_C*:補正レンズの焦点距離。

熱負荷の無い場合、設計上のビーム集束点は 5.11 m であ る。電子ビーム像を CCD カメラの位置を変えながら撮影 し、ビームの水平、及び、垂直方向の FWHM(半値幅)を 計測した。以上の測定を電子エネルギーと蓄積電流を変 えて行った結果を Figure 2 と Figure 3 に示す。測定された ビームの FWHM に対して FWHM= $A(\ell-\ell_{LF})^2+w_{min}$ という関数を使い、 A, ℓ_{LF}, w_{min} をパラメーターとして フィッティングを行い、FWHM が最小となる位置、つ まり、集束点 ℓ_{LF} を決定する。ここで A は 2 次系数、 w_{min} は FWHM の最小値である。フィッティングの結果 を Figure 2 と Figure 3 に実線で得られたパラメーターを 水平方向に対しては Table 1、垂直方向に対しては Table 2 に示す。

^{2.} ビーム集束点の測定

^{*1.618@}lasti.u-hyogo.ac.jp

Figure 1: ビームライン SR5 の光学設計図

Table 1: フィッティングによって得られたパラメーター (水平方向)

Table 2: フィッティングによって得られたパラメーター (垂直方向)

加速器状態	A	ℓ_{LF}	w_{min}	加速器状態	A	ℓ_{LF}	w_{min}
1.0GeV-42mA	15.1 ± 2.1	5.255 ± 0.018	0.95 ± 0.06	1.0GeV-42mA	5.7 ± 0.5	5.404 ± 0.007	0.60 ± 0.02
1.0GeV-300mA	11.2 ± 1.0	5.266 ± 0.017	1.06 ± 0.05	1.0GeV-300mA	5.9 ± 0.3	5.468 ± 0.004	0.54 ± 0.01
1.5GeV-169mA	12.4 ± 0.7	5.354 ± 0.008	1.95 ± 0.04	1.5GeV-169mA	5.4 ± 0.3	5.607 ± 0.011	1.01 ± 0.02
1.5GeV-284mA	12.8 ± 1.1	5.409 ± 0.015	1.95 ± 0.06	1.5GeV-284mA	4.9 ± 0.3	5.770 ± 0.022	1.00 ± 0.02

Figure 2: 水平方向 FWHM の ℓ 依存 (実線は 2 次関数 フィッティングの結果)

3. 集束点の蓄積電流依存

集束点 ℓ_{LF} の蓄積電流依存を Figure 4 に示す。熱負 荷がない場合の蓄積電流 0 mA での集束点を ℓ_{LF0} とし、 これを外挿から求めることができる。1.0 GeV での測 定結果から得た ℓ_{LF0} と 1.5 GeV での測定結果から得た ℓ_{LF0} は測定誤差の範囲で一致させることができた。し かし、水平方向と垂直方向の ℓ_{LF0} は一致せず、ともに 設計値 $\ell_{LF0} = 5.11$ m より長い。ミラー製作時の平面度

Figure 3: 垂直方向 FWHM の ℓ 依存 (実線は 2 次関数 フィッティングの結果)

測定によれば、水平方向はほぼ平面 (f = 1000 m くらい の凹面)、垂直方向は $f = 100 \sim 150 \text{ m}$ くらいの凸面に なっていた [1]。 垂直方向の ℓ_{LF0} と水平方向の ℓ_{LF0} の 差は f = 160 m の垂直方向の発散力で説明できるので、 製作時の平面度が原因であると考えられる。一方、水平 方向と設計値の差を集束用レンズの焦点距離 f_L 、もし くは、設計上の光源からベリリウムミラーまでの距離 ℓ_{SB} で説明しようとすると、 f_L なら約 1 %、 ℓ_{SB} なら 約-4 cm の誤差が必要となる。どちらも極端に不自然な

Figure 4: 集束点 ℓ_{LF} の蓄積電流依存

量とは言えないがここでは f_L に誤差があると仮定し、 $f_L = 1.818 \text{ m}$ として以降の計算を行う。

4. 熱変形の解析

熱変形の程度を defocusing の焦点距離の逆数 $1/f_B$ として求める。光源でのビームの幅と傾きを x_1, x'_1 、観測点でのビームの幅と傾き x_2, x'_2 とすると、これらの関係は 2 行 2 列のトランスファー行列

$$M = \begin{array}{c} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \tag{1}$$

を用いて以下の式で表すことが出来る。

$$\begin{pmatrix} x_2 \\ x'_2 \end{pmatrix} = M \begin{pmatrix} x_1 \\ x'_1 \end{pmatrix}$$
(2)

Figure 1 より、光源点から測定点までの トランスファー 行列 *M* は

$$M = \begin{array}{ccccc} 1 & \ell & 1 & 0 & 1 & \ell_{BL} \\ 0 & 1 & -\frac{1}{f_L} & 1 & 0 & 1 \\ & & & \frac{1}{f_P} & 1 & 0 & 1 \end{array}$$
(3)

となる。測定点でのビーム幅は

$$x_2 = a_{11}x_1 + a_{12}x_2' \tag{4}$$

である。ビームの幅 x_2 は $a_{12} = 0$ で最小になり、この とき $\ell = \ell_{LF}$ である。 $a_{12} = 0$ を $1/f_B$ について解くと、

$$\frac{1}{f_B} = \frac{f_L(\ell_{SB} + \ell_{BL} + \ell_{LF}) - \ell_{LF}(\ell_{SB} + \ell_{BL})}{\ell_{SB}\ell_{BL}\ell_{LF} - f_L\ell_{SB}(\ell_{BL} + \ell_{LF})}$$
(5)

が得られ、Table 1,2 の ℓ_{LF} を式 (5) に代入して熱変形 の程度を $1/f_B$ として求めることができる。次に、熱変 形の程度 $1/f_B$ が蓄積電流に線形に比例していると仮定 して、その方程式を測定値から求める。これを Figure 5 に示す。この結果をハルトマンマスクを使った測定結果 と比較すると、水平方向はほぼ一致し、垂直方向はハル トマンマスクを使った測定結果の約半分であった。

Figure 5: $1/f_B$ の蓄積電流依存

- 5. 補正レンズ
- 5.1 設置位置の推定

水平方向の集束点の変化はカメラの移動により集束 点を合わせることが可能である。一方、水平方向と垂直 方向の集束点の一致には垂直方向のみに集束を与える 垂直方向シリンドリカル凸レンズ (f_C =1 m) を用いる。 設置位置は石英凸レンズ - 集束点 間とする。光源点か ら集束点までの トランスファー行列 M は

$$M = \begin{array}{ccccccccc} 1 & \ell_{CF} & 1 & 0 & 1 & \ell_{LC} \\ 0 & 1 & -\frac{1}{f_C} & 1 & 0 & 1 \\ & & & 1 & 0 & 1 & \ell_{BL} \\ & & & -\frac{1}{f_L} & 1 & 0 & 1 \\ & & & & \frac{1}{f_B} & 1 & 0 & 1 \end{array}$$
(6)

である。前章と同様に $a_{12} = 0$ として補正レンズの位置 ℓ_{LC} を求める。 $f_L = 1.818$ mとし、Figure 5 で示した 垂直方向の $1/f_B$ と Figure 4 で示した水平方向の集束点 $\ell_{LF} = \ell_{LC} + \ell_{CF}$ を代入して ℓ_{LC} について解くと、 ℓ_{LC} は蓄積電流 Iの関数として得られる。これを Figure 6 に示す。

Figure 6: 補正レンズの設置位置 ℓ_{LC}

Figure 7: 補正レンズ設置後のビーム集束点 (矢印は集束点)

5.2 集束点の補正

それぞれ2種類の電子エネルギーおよび蓄積電流に おいて、予測した設置位置に補正レンズを設置し、集束 点の測定を行った結果を Figure 7 に示す。水平と垂直の 集束点が完全に一致するまでには至っていないが、実用 上、問題にならない程度にすることができた。

集束力の変更により、集束点のビームの倍率が計算上 Table 3 に示すように変化する。0 mA では垂直方向の 倍率は水平方向の倍率の71%となり、実際のビーム形 状より、やや扁平の形状で観測される。熱負荷がある場 合、水平の倍率変化は数%程度だが、1.5 GeV-300 mA では垂直方向の倍率は水平方向の倍率の58%までにな るので注意が必要である。

Table 3: 倍率の変化

加速器状態	水平	垂直	垂直/水平	
0 mA	-1.894	-1.349	0.71	
1.0 GeV-300 mA	-1.893	-1.255	0.66	
1.5 GeV-300 mA	-1.944	-1.134	0.58	

6. まとめ

我々は、NewSUBARUのビームライン SR5 で使われ ているベリリウムミラーに生じた熱変形の影響を垂直 方向の defocusing で近似し、この量の測定を行った。こ の測定により、水平方向、および、垂直方向の結像位置 に蓄積電流依存があることをハルトマンマスクを使った 測定と同様に確認できた。 水平方向と垂直方向の結像位置のずれを補正するた め、ビームライン上にシリンドリカル凸レンズを設置 した。その測定結果から各加速器状態で水平方向の結 像位置、および、ミラーの垂直方向の熱変形の影響を予 測し、最適な補正レンズ位置を与える関数を得た。その 結果、約15 cm ~ 35 cm の結像位置のずれを約1 cm~ 4 cm 程度まで補正することに成功した。測定点を増や すことにより正確な補正レンズの設置位置を計算し、結 像位置のずれを減少させることが可能であると考えて いる。

参考文献

- [1] 庄司善彦、竹田幸二、「ニュースバルの可視放射光を使っ たビームモニター用ベリリウムミラー」、第5回日本加速 器学会 (2008)、TP043.
- [2] 庄司善彦、竹田幸二、皆川康之、篠本孝秀「ニュースバル BL1b 可視放射光ビーム診断ライン」、第6回日本加速器 学会 (2009)、WPBDA25.
- [3] 竹田幸二、庄司善彦、「New SUBARU のビーム診断 蓄積 リングでの入射ミスマッチ」、第6回日本加速器学会 (200 9)、WOBDA01.
- [4] Y. Shoji, K. Takeda, Y. Minagawa, Y. Takemura, S. Suzuki, T. Asaka, " ELECTRON STORAGE RING AS A SIN-GLE SHOT LINAC BEAM MONITOR ", Proceedings of IBIC2012, TUCC01.