次世代加速器用スイッチング回路

HIGH SPEED SWITCHING CIRCUITS FOR FUTURE ACCELERATORS

小笹有輝^{#, A)}, 佐藤祥^{A)}, 江偉華^{A)}, 徳地明^{A),B)}, 明本光生^{C)}, 中島啓光^{C)}

Yuki Kozasa^{#, A)}, Sho Sato^{A)}, Weihua Jiang^{A)}, Akira Tokuchi^{A),B)}, Mitsuo Akemoto^{C)}, Hiromitsu Nakajima^{C)}

^{A)} Nagaoka University of Technology

^{B)} Pulsed Power Japan laboratory

^{C)} KEK

Abstract

We are developing a Klystron modulator power source for ILC (International Linear Collider). This modulator needs $120kV(\pm 0.5\%)$, 140A, 5pps, with a pulse width of 1.7ms, aiming for a compact, low-cost and reliable design. To meet these requirements, we propose solid state, chopper controlled pulsed power generator using Marx-topology. This paper shows circuit simulation and prototype experimental results.

1. はじめに

これまでに高エネルギー物理実験を目的として 様々な加速器が建設されてきた。現在、新たな素粒 子実験のために世界中の研究者によって ILC(International Linear Collider) 計画が推進されてい る。ILC 計画は全長約 30km の直線状の加速器に よって電子と陽電子をそれぞれ加速し、250GeV ま で到達させて衝突実験を行う計画である。ILC 計画 の直線加速器は10MW マルチクライストロンでマイ クロ波を発生させて荷電粒子を加速する。また、マ ルチクライストロンは約 600 本使用され、それらを 駆動するパルス電源も約 600 台使用される[1]。その ためパルス電源の小型化、低コスト化、高信頼性な どが要求される。さらに、出力パルスは電圧 120kV(±0.5%)、電流 140A、パルス幅 1.7ms、繰り 返し率 5pps であることが要求される。電源にパル ストランスを用いる場合、大型のコアを用いる必要 があるためサイズ・コストともに大きくなってしま い、立ち上がりも遅くなる。パルストランスを用い ない方法として、マルクス発生器を用いた方法が有 用である^{[2][3]}

本論文では半導体デバイスを用いたマルクス発生 器の構成とチョッパ制御を応用したパルスパワー電 源の提案、回路シミュレーション結果、試作電源の 性能評価について報告する。

2. 回路構成

2.1 半導体マルクス発生器

図1に一般的なマルクス発生器の回路図と動作を 示す。一般的な半導体デバイスによるマルクス発生 器は図1のように、充電用と放電用の半導体スイッ チ、ダイオード、エネルギー蓄積用のコンデンサか ら構成される。充電時は(a)の経路でそれぞれのコン デンサが入力電圧 V_{IN} に達するまで充電され、放電 時は(b)の経路で負荷には入力電圧 V_{IN} の段数倍が出 力される。エネルギー蓄積用のコンデンサは放電によっ て電荷を失うため、放電時間が長くなるにつれて出力電 圧は低下する。そのため 120kV(±0.5%)を達成するには、 このコンデンサを大容量化する必要があるが、装置が大 型化するという欠点がある。そのため小型化を目的とし たチョッパ制御を用いた定電圧制御を提案する。

2.2 チョッパ制御

降圧チョッパ回路の回路図と動作を図2に示す。 降圧チョッパ回路は DC/DC コンバータに用いられ ており、半導体スイッチの ON-OFF によってパルス 幅変調(PWM)を行い、出力電圧を制御する方法であ る。スイッチが ON の時は直流電源-インダクタ-コンデンサの経路で電流が流れ、スイッチが OFF の ときはインダクタンスに蓄えられた磁気エネルギー によってインダクターコンデンサーダイオードの経 路で電流が流れる。降圧チョッパ回路を前述のマル クス発生器のそれぞれの段に組み込むことによって 定電圧制御を行う。

Figure.2 Schematic of Step-down chopper circuit

2.3 定電圧制御マルクス発生器

今回提案する定電圧制御マルクス発生器の回路図 を図3に示す。充電時は図1と同様の経路で電解コ ンデンサに電圧を蓄積し、放電時はSW1をON-OFF することによって定電圧制御を行う。また、一般的 な降圧チョッパ型 DC/DC コンバータではLのイン ダクタンスと C_1 の容量を大きくすることによって カットオフ周波数を下げ、リプルを小さくするが、 立ち上がり時間・立ち下り時間が遅くなる。また素 子のサイズも大きくなってしまい、電源が大型に なってしまう。そこでマルクス発生器のそれぞれの 段において SW₁のスイッチング周期に段数分の位相 差を持たせることによって、Lのインダクタンスと C_1 の容量が小さくても重畳した電圧のリプルを低減 することが可能である(図4)。

マルクス発生器の定電圧制御方法として現在2つ の方式を検討している。1つ目はアナログ回路によ るフィードバック方式であり、現在シミュレーショ ン段階である。2つ目は FPGA によるパルス幅変調 制御で、手動またはマイコンによってパルス幅変調 を調整する方式である。現在、図3のマルクス発生 器を試作し、これらの制御方式の試験・検討を推進 している。

Figure.3 Schematic of constant voltage controlled Marx generator circuit

3. 回路シミュレーション

回路シミュレーションソフト Micro Cap を用いて 図3の回路を組み立て、シミュレーションを行っ た。2段マルクスのシミュレーション回路図と結果 を図 5 の(a),(b)に、4 段マルクスのシミュレーション 結果を(c)にそれぞれ示す。(a)に示すようにアナログ 回路によってフィードバック制御を行い、入力電圧 1300V、一段当たりの出力電圧 1000V、PWM 周波数 40kHz とした。(b)より1段目と2段目の電圧波形の 位相を半周期分の 12.5us だけずらすことによって合 成電圧のリプルを低減していることが確認できる。 またメインコンデンサ電圧がパルス立ち上がり時の 1300Vから 1.7ms 後には 1100V付近まで低下してい るが、パルス幅が徐々に広がっていくことによって 定電圧制御を行っていることが確認できる。(c)では マルクスの段数を 4 段に増やし、一段当たりの位相 のずれを 1/4 周期の 6.25 s とした。(b)の 2 段の波形 と比べてリプルがさらに小さくなっていることが確 認できた。この結果より後述の試験結果に比べて、 段数を重ねていくにつれて低リプル化することが期 待できる。

[#]y_kozasa@etigo.nagaokaut.ac.jp

(a) Schematic of simulated circuit

4. 試作機試験

図3の回路図を元に2段の定電圧制御マルクス発 生器の試作機を作製し、試験を行った。各素子のパ ラメータを表1に示す。制御方法はFPGAによって 20kHzで矩形波を発生させ、手動でパルス幅を0s から50sまで可変できるように設定した。まず始 めにパルス幅を40s(duty比=80%)で固定して試験 をした。その結果を図6に示す。(a)にはマルクス発 生器の1段目のコンデンサ電圧、2段目のコンデン サ電圧及び合成電圧の波形を示しており、(b)は1段 目の PWM 用スイッチ SW1のトリガ電圧と、パルス 幅の時間変化を示している。また、2 段目の PWM 用スイッチ SW10 には(b)の波形を 25 s 位相をずら したトリガ信号を入れてリプルの低減を図っている。 (a)の波形から1段目の振動が落ち着いた部分のリプ ルが±9.6%に対して、合成電圧のリプルが±3.4%とい うことが分かった。また、コンデンサ C₀の放電に より、電圧のパルス幅が長くなるにつれて、合成電 圧が徐々に低下していることが確認できる。さらに リプルを詳しく観察するために、(a)の波形の時間レ ンジを狭くした波形を図7に示す。1段目と2段目 のリプルの周期はそれぞれ50sであり、位相のず れは25sであることがわかる。また、合成電圧の リプルの周期は25sであることが確認できた。こ れらの波形より、リプルが完全に消えなかった原因 として1段目、2段目の波形はともに完全な正弦波 ではないためにリプルが十分打消されなかったとい うことが挙げられる。現在、このマルクス発生器は 2段で試験を行っている。前述の通り、段数をさら に重ねることで、さらなるリプル低減が可能である。

Table 1 Experimental condition

Device	Specification
DC Power Supply V_{IN}	100[V]
Capacitor C ₀	5[mF]
Capacitor C1	10[uF]
Inductor L	120[uF]
Load	4.4[Ω]

次に、図 6 の(a)で見られた合成電圧の低下を補償 するために、FPGA によって PWM のパルス幅を 100ns ずつ増加させ、試験を行った。その結果を図 8 に示す。図 6 の一定のパルス幅の場合、立ち上が りが落ち着いた部分の電圧を基準にすると、終端部 では 5%のドループが発生していた。一方で図 8 の パルス幅を 100ns ずつ増加させた場合では、ドルー プは 0.1%とほぼ完全に、補償できている。C₀の容 量が小さく、ドループが大きくなる場合でもこのよ うに補償ができれば、電源の小型化が可能である。

Figure.8 Experimental results with droop compensation

5. まとめ

本論文では、定電圧制御マルクス電源の提案と回 路シミュレーション、試作機の試験について記述し ている。現在、制御方法としてアナログ回路による フィードバック制御方式と FPGA による定電圧制御 方式の開発を同時進行しており、アナログ回路によ るフィードバック制御方式は回路シミュレーション による試験段階であり、マルクスの段数を増やして いくことによってリプルを減らすことができること を確認した。今後は制御回路の実装・試験を進行し ていく予定である。また、FPGA による方式では PWM のパルス幅を手動で調整し、パルス幅を徐々 に広げていくことによって出力電圧のドループを補 正することができた。現在は FPGA の書き換えを手 動で行っているが、今後はメイン回路の各部電圧を モニタリングしてマイコンによる FPGA の自動書き 換えを行えるようなシステムを構築していく予定で ある。

参考文献

- [1] C. Burkhart, A.Benwell, T.Beukers, M.Kemp, R.Larsen, M.Nguyen, J.Olsen, T.Tang: õILC MARX MODULATPR DEVELOPMENT PROGRAM STATUSö, Pulsed Power Conference, pp. 807 6 810 (2009)
- [2] T.Tang, C.Burkhart, M.Nguyen : õA VERNIER REGULATOR FOR ILC MARX DROOP COMPENSATIONö, Pulsed Power Conference, pp. 1402 ó 1405 (2009)
- [3] Dr. Floyd Arntz, Dr. Marcel Gaudreau, Kevin Ostlund, Michael Kempkes, Dr. Jeffery Casey : õNew Concepts for Puled Power Modulators: Implementing a High Voltage Solid-State Marx Modulatorö , Vacuum Electronics Conference, pp.427 ó 428 (2012)