J-PARC MainRing 高調波重畳による Bunching Factor の改善 THE BUNCHING FACTOR IMPROVEMENT BY SUPERPOSITION OF HIGER HARMONICS

原圭吾 *^{A)}、五十嵐進 ^{A)}、大森千広 ^{A)}、小関忠 ^{A)}、佐藤洋一 ^{A)}

Keigo Hara^{*A)}, Susumu Igarashi^{A)}, Chihiro Ohmori^{A)}, Tadashi Koseki^{A)}, Yoichi Sato^{A)} ^{A)}High Energy Accelerator Resarch Organization

Abstract

The J-PARC accelerator complex consists of 3 accelerators, a linear accelerator, a rapid cycle synchrotron (RCS) and a Main Ring (MR) synchrotron. To study for longitudinal beam dynamics of J-PARC Main Ring (MR), tracking calculation have been performed. Since Bunching Factor is a 0.2 (bunch length 200 ns) by limitation of extraction RCS kicker, simulation calculation to such distribution was performed. By adding higher order harmonics voltage in addition to a fundamental and secondary harmonics voltage showed that Bunching Factor can be higher.

1. はじめに

J-PARC は大強度の陽子ビームを供給する加速器施設 である。本発表ではlinac、RCS、MR というJ-PARC加 速器群の中で MR に関してビームシミュレーション計 算を行った結果を示す。現在 RCS の出力が 800 kW(MR 530 kW 相当) になった場合を想定して MR での RF 電圧 パターンについてシミュレーション計算を行っている。 当初は RCS 取り出し時の Bunching Factor(B.F.) が必要 とされている 0.3(bunch 長 300 ns) の分布をもとに計算 を行い良好な結果が得られていた。しかしながら現在の RCS の取出しキッカーでは B.F. が 0.2(bunch 長 200 ns) までが取出しの限界であるためこのような分布 (Fig. 1) に対してのシミュレーション計算を行った。

Figure 1: The longitudinal phase space distribution and the bunch shape at the MR injection

BUNCHING FACTOR 改善のための電圧 操作

Table 1 に今回の計算のパラメーターを示す。 B.F. 改善のために先ずは基本波電圧だけでなく、二倍 高調波電圧を加えてみた。そしてそれぞれの電圧、位相

Table 1: Main Parameter

Path of MR ring	1567.50 m
MR injection Energy	3 GeV
MR extraction Energy	30 GeV
MR repetition period	2.4 sec
RCS Beam Power	800 kW
Acceleration time	1.4 s
Injection time	0.12 s
Parabola time	0.1 s

を変化させ良い解がないか探ってみた。加える電圧 *V_t* は以下の式のようにあらわされる。

$$V_t = V_0 \sin h_0 \omega_{revs} t + V_{2nd} \sin(2h_0 \omega_{revs} t + \psi_{2nd})$$
(1)

ここで V_0 、 h_0 は基本波の電圧、harmonic 数を表し、 ω_{revs} はシンクロナス粒子の周回周波数である。また V_{2nd} 、及び、 ψ_{2nd} はそれぞれ二倍高調波電圧、シンク ロナス粒子からの位相のずれである。パラメーターと して $V_0=100$ kV, $V_{2nd}=70$ kV、 $\psi_{2nd}=0$ で待ち受けした 時に、B.F. を高くできた。しかしながら Fig. 2 を見れ ばわかるが、最初の4曲振動の後 (シンクロトロン周波 数が約 300 Hz なので、四極振動の周期は約 0.0015 s と なる。)の B.F. の落ち込みがひどい (~0.25)。このため Beam Loss が許容できないものになっていた。

基本波と二倍高調波の組み合わせでは B.F. の最初の 落ち込みはこれ以上改善できなかったので、更に高次の 高調波を重畳させてみた。具体的には式1の V_t に更に 以下に表わされるような電圧を加える。

 $V_t = V_0 \sin h_0 \omega_{revs} t + V_{2nd} \sin(2h_0 \omega_{revs} t + \psi_{2nd})$

 $+V_{high}\sin(h_{high}\omega_{revs}t)$ (2)

ここで V_{high} は高次高調波の電圧、 h_{high} は harmonic 数である。

^{*} keigo.hara@kek.jp

Figure 2: The simulation result of the Bunching factor. A fundamental and secondary harmonics voltage are added.

Fig. 3 は *h_{high}/h*₀=6、*V_{high}=35* kV の高次高調波を加 えた時の B.F. である。入射時に B.F. が 0.2 なのは制約 上変えようがないが、その後の B.F. は、ほぼ 0.3 以上で あり、四極振動も収まっているのが見て取れる。

Figure 3: The simulation result of the Bunching factor. A fundamental, secondary harmonics and $h_{high}/h_0=6$ harmonics voltage are added.

Fig. 4 は基本電圧のみを加えた時、また Fig. 5 は基本 波、二倍高調波、及び $h_{high}/h_0 = 6$ の高次高調波電圧 を加えた時のビームのエミッタンスである。基本波電圧 のみを加えた時は、取り出し時のビームエミッタンスは 6 eVs なのに対し、基本波、二倍高調波、及び h_{high}/h_0 = 6 の高次高調波電圧を加えた時のビームエミッタンス は 10 eVs をこえており大幅にエミッタンスを増加でき ていることが見て取れる。なおこの時二倍高調波、及び $h_{high}/h_0 = 6$ の高次高調波電圧は入射から 0.13 sec まで は $V_{2nd} = 70$ kV、 $V_{high} = 35$ kV 加わえており 0.13 sec か ら 0.14 sec にかけて線形関数で 0 kV まで落としている。

Fig. 6 は基本波、及び、二倍高調波のみを加えた時 (式 1)の位相空間分布とそれを時間軸方向に射影した、 バンチ波形である。入射してから 0.0015 sec 経った時 で、B.F. が最も低下しているときのものである。二倍高 調波を加えることでバンチ長の引き延ばしはできてい るものの、その二倍高調波のため山が二つできている。 そのためピーク電流が増加し B.F. の低下を招いている。 Fig. 7 は基本波、二倍高調波、及び h_{high}/h₀ = 6 の高 次高調波を加えた時(式 2)の位相空間分布とそれを時

Figure 4: The simulation re- Figure 5: The simulation sult of the emittance of a result of the emittance of beam. A fundamental voltage a beam. A fundamenare added. The emittance of a tal, secondary harmonics and beam is 5 eVs at the MR in- h_{high}/h_0 =6 harmonics voltjection.

Figure 6: The longitudinal Figure 7: The longitudinal phase space distribution and phase space distribution and the bunch shape. A funda- the bunch shape. A fundamental, secondary harmonics mental, secondary harmonics wental, secondary harmonics are added. Separatrix ics and $h_{high}/h_0=6$ harmonis shown as dashed line. ics voltage are added.

間軸方向に射影した、バンチ波形である。入射してから の時間は先ほどと同じく 0.0015 sec 経った後のものであ る。二倍高調波によってバンチ長が引き伸ばされている のは Fig. 6 と同じだが h_{high}/h₀ = 6 高次高調波が入る ことにより Fig. 6 で形成されている山が平滑化されてい るのが見て取れる。これによりピーク電流が下がり B.F. を高く保つことができている。

Table 2 は $h_{high}/h_0 = 3-10$ の高次高調波を加えた時 の B.F. の最低値を示している(入射時の B.F. の値は除 く)。 $h_{high}/h_0 = 3$ 、4の時最も悪くなり、 $h_{high}/h_0 = 6$ を除けば $h_{high}/h_0 = 7$ 、10の時高い値を示している。

Fig. 8 は基本波、二倍高調波、及び $h_{high}/h_0 = 3$ の高 次高調波を加えた時、また Fig. 9 は基本波、二倍高調 波、及び $h_{high}/h_0 = 4$ の高次高調波を加えた時の位相 空間分布とそれを時間軸方向に射影した、バンチ波形で ある。セパラトリクスを見てもわかる様に、 $h_{high}/h_0 = 2$ の成分をより強めてしまっている。このため二山の成 分が多くなりピーク電流を増やし B.F. を低いものにし てしまっている。これは h_{high}/h_0 の時数が低い場合や、 $h_{high}/h_0 = (2 \times 偶数)$ の場合、山の成分を強めてしまう

Table 2: Comparison of Bunching Factor

h_{high}/h_o	B.F.
基本波のみ	0.18
3	0.22
4	0.22
5	0.23
6	0.29
7	0.26
8	0.24
9	0.25
10	0.26

ため B.F. が低くなったと考えられる。また *h_{high}/h*₀ = 8 の場合に B.F. の局所的最小値になっているのもそのためと思われる。

Figure 8: The longitudinal Figure 9: The longitudinal phase space distribution and phase space distribution and the bunch shape. A funda- the bunch shape. A funda- mental, secondary harmon- ics and $h_{high}/h_0=3$ harmon- ics and $h_{high}/h_0=4$ harmon- ics voltage are added.

Fig. 10 は基本波、二倍高調波、及び $h_{high}/h_0 = 7$ の 高次高調波を加えた時、また Fig. 11 は基本波、二倍高 調波、及び $h_{high}/h_0 = 10$ の高次高調波を加えた時の位 相空間分布とそれを時間軸方向に射影した、バンチ波形 である。 $h_{high}/h_0 = 7$ の場合、 $h_{high}/h_0 = (2 \times 偶数)$ で はないためある程度はピークが分散されており B.F. が 高めになっている。 $h_{high}/h_0 = 10$ の場合ピーク電流が $h_{high}/h_0 = 6$ と同程度に抑えられている。このことから $h_{high}/h_0 = 6$ に比べて小さいので B.F. が他と比べて 高いものの $h_{high}/h_0 = 6$ と比較すると低くなっている。

3. まとめ

基本波、二倍高調波、及び、高次高調波を加えること により、たとえ B.F. が低い状態で入射しても、B.F. を 高くすることができることが分かった。このことにより 横方向を含めた計算でも Beam 損失が減らせることが分

Figure 10: The longitudinal Figure 11: The longitudinal phase space distribution and phase space distribution and the bunch shape. A funda- the bunch shape. A fundamental, secondary harmon- mental, secondary harmonics ics and $h_{high}/h_0=7$ harmon- and $h_{high}/h_0=10$ harmonics ics voltage are added.

かった ^[1]。

参考文献

[1] Y. Sato et al., this proceedings.