ERL 試験加速器入射部における横方向ビーム性能評価 TRANSVERSE BEAM PERFORMANCE MEASUREMENT AT COMPACT-ERL INJECTOR

本田洋介 *^{A)}、宮島司 ^{A)}、コンパクト ERL コミッショニンググループ ^{B)} Yosuke Honda^{* A)}, Tsukasa Miyajima^{A)}, Compact ERL commissioning group^{B)} ^{A)}High Energy Accelerator Research Organization ^{B)}KEK / JAEA / Hiroshima university

Abstract

Commissioning operation of Compact-ERL injector has started in KEK. It consists of a photo-cathode electron gun, a super conducting accelerator, and a beam diagnostic line. The beam diagnostic line was built for proving the performance of the injector. It has an emittance measurement system with a slit scanner. We did a series of emittance measurements by changing bunch charge up to 7.7 pC/bunch. We also did the measurement at different conditions of initial pulse length aiming to check space charge effects.

1. はじめに

エネルギー回収型線形加速器 (ERL) は、大平均電流、 低エミッタンス、短バンチ、を実現できる次世代の加速 器である。KEK では、その将来の放射光源への応用を 目的の一つとして、開発を行ってきており、試験加速器 (コンパクト ERL)を建設している。目標は、建設を通 じて要素技術の開発を行い、実際の運転の形態におい て動作実績を蓄積することである。また同時に、建設と ビームコミッショニングを通じて人と組織を育て、将来 の実機の建設の準備をすることも重要な目的である。

線形加速器では、ビーム性能は主に入射器の性能で 決まる。電子銃から入射器加速空洞までの、非相対論的 エネルギー領域の設計が特に重要である。次世代放射 光源としての性能を検討する際、入射器における、高輝 度、短パルスのビームの実証が重要になる。ビーム性能 について十分な評価が出来るように、ビーム周回部とは 独立のビーム診断専用のビームラインを準備した。

2013年4月より、コンパクト ERL 入射部の運転が開始された。Figure 1 にビームラインのレイアウトを示す。 光陰極 DC 電子銃で電子ビームを生成し、CW 運転の超 伝導加速空洞により 5.6 MeV までの加速を行う。入射 部のみの運転では、周回部に向かうマージャー部をオ フにすることでビームを直進させ、診断ラインに導く。 ビームは 16 度に偏向したあと調整用のダンプに到達す る。ここでは、診断ラインにおけるエミッタンスの評価 の結果についてまとめる。

2. 入射器診断ライン

2.1 診断ラインの設計と運転状況

入射器におけるビームパラメータの設計値を Table 1 に示す。診断ラインにおいては、ビーム電流、エネル ギー、ビーム位置、プロファイルなどの基本的な測定に 加えて、エミッタンス、バンチ長、エネルギー拡がりに ついて評価を行う^[1]。

コミッショニング時は、ビーム輸送の確立を優先した 調整を行った為、加速器のパラメータは最終的な設計値 では無い。具体的には、加速空洞は全てオンクレスト位相に調整されている点と、バンチャーの電圧は低めとしている点が異なる。また、電子銃の電圧は、設計の 500 kV ではなく、390 kV で運転している。

Table 1: Designed beam parameters at the exit of the injector.

Parameter	design value	comment
Q	7.7 pC/bunch	1.3 GHz 繰り返しで 10mA 相当
γ	10.84	全エネルギー 5.54 MeV
σ_γ	0.0184	エネルギー拡がり 0.17%
ϵ_n	0.21 m	規格化エミッタンス
σ_t	2.13 ps	RMS バンチ長

2.2 ビーム運転モード

コンパクト ERL は、本来は CW ビーム運転を目標と している。しかし、ここでは破壊的な方法でビーム診 断を行う必要があるため、マクロパルスモードで運転 を行った^[2]。このモードでは、加速空洞の RF や電子 銃の高電圧は CW 運転状態であるが、電子銃カソード の励起レーザーを時間的に切り取って運転することで、 ビームの時間幅を制限する。典型的には、5 Hz で運転 し、ビームモニタもこれに同期している。このモードの パラメータを Table 2 に示す。

Table 2: Beam operational mode for beam diagnostics.

Parameter	value
バンチの基本繰り返し	1.3 GHz
マクロパルス繰り返し	5 Hz (Typ.)
マクロパルス時間幅	1 s (Typ.)
マクロパルス立ち上り (立ち下り)	10 ns
マクロパルス内バンチ数	1300

^{*} yosuke@post.kek.jp

Figure 1: Layout of the compact-ERL injector and the beam diagnostic line.

2.3 ビームモニタ

スクリーンモニタ ビームプロファイルの測定は、ス クリーンモニタで行う。厚み 0.1 mm の Ce: YAG シンチ レータを、ビーム軸にたいして 45 度に挿入し、90 度方 向のビューポートからカメラで観測するセットアップで ある。Figure 2 にセットアップを示す。加速器システム は CW で動作しているため、暗電流によって、あるい はマクロパルス切り出しの消光比が悪いと、スクリーン モニタが連続的に発光してしまう恐れがある。Ce:YAG シンチレータは、発光の時定数が短い為、短い露光時間 で撮影することで、ビームタイミングに制限した測定が 可能である。Ethernet 接続の CCD カメラ (Allied Vision Technologies 社 Prosilica GC650) を用いている。画素数 は 659×493 で、ダイナミックレンジは 12-bit である。 f35のレンズをとりつけてシンチレータを結像し、画像 における1ピクセルがスクリーンでのサイズ 54 μm に 対応する。ビームタイミングでトリガし、典型的に露光 時間 10 µs で読み出している。分解能は、水平方向 72 μm、垂直方向 33 μm と見積もられている。

Figure 2: Setup of the screen monitor.

スリットスキャナ エミッタンスの測定は、スリットス キャン法で行った。厚み1mmのタングステン板にワ イヤー放電加工で幅100μmのスリットを加工したター ゲットを、ダブルベローズ式のスキャナチェンバーに設 置した。水平方向のスリットが垂直方向に移動するも の(v-slit、垂直エミッタンス測定用)と、垂直方向のス リットが水平方向に移動するもの(h-slit、水平エミッタ ンス測定用)が独立に設置されている。Figure 3にセッ トアップを示す。

H-slit scanner V-slit scanner

Figure 3: Setup of the slit scanner.

2.4 ビーム調整

診断ラインには、四極電磁石が設置されており、それ らは 0.5 mm 以下の精度で設置されている。ビーム軌道 は補正電磁石を用いて行うが、ビーム応答から、これ ら電磁石の磁場中心に調整している。加速空洞とバン チャー空洞についても同様に、ビーム応答から軌道の調 整を行っている。

3. エミッタンス測定のセットアップ

電子銃のみ 390keV での運転時の入射部のエミッタン スと、超伝導加速空洞により 5.6MeV に加速した診断部 のエミッタンスの測定を行った。入射部については、ソ レノイド電磁石によって収束させるウェストスキャン法 を用いた。ただし、空間電荷効果が影響しない低電荷条 件の測定である。診断部については、低電荷条件では四 極電磁石で収束するウェストスキャン法で、高電荷条件 ではスリットスキャン法で測定を行った。

3.1 ウェストスキャン法による測定

点 1 に収束力 k の要素があり、そこから L だけ下流 の点 2 においてビームサイズを測定する状況を考える。 測定されるビームサイズ σ_2 は、Equation 1 で与えられ る。(σ_1 は初期ビームサイズ、 α,β は Twiss パラメータ である。)

$$\sigma_2 = \sqrt{L^2 \sigma_1^2 (k - (\frac{1}{L} - \frac{\alpha_1}{\beta_1}))^2 + \frac{L^2 \epsilon^2}{\sigma_1^2}}$$
(1)

収束力 kを変えながらビームサイズ σ_2 を測定すること で、エミッタンス ϵ を得る事ができる。

入射部では、収束にソレノイドを用いた。ソレノイド は収束と同時に像を回転させる作用もあるので、水平垂 直の独立な測定にはならない。ここでは、円筒対称と仮 定し、区別せず扱っている。診断部では、収束に四極電 磁石を用いた。なお、電磁石の電流と収束力 k の関係 が分かっていなければならないが、四極電磁石のビーム 応答から確認している。

Figure 4 に、測定例を示す。スクリーンモニタの画像 を射影して得たプロファイルをガウス関数でフィットし、 RMS ビームサイズを得た。これを k にたいしてプロッ トしたものである。双曲線関数でフィットし、エミッタ ンスを求めた。

Figure 4: Example of a waist scan emittance measurement at the gun.

3.2 スリットスキャン法による測定

ウェストスキャン法では、距離を伝搬させながらビー ムを収束して測定する。このため、バンチ電荷が大きく 空間電荷による発散力が無視出来ない領域では、単純な 測定が出来ない。スリットスキャン法では、スリットで 一部を切り取って、空間電荷効果の無視出来る低電荷と したうえで伝搬させる為、高バンチ電荷条件でも測定が 可能である。Figure 5 に示す、スリットとスクリーンモ ニタによるセットアップで測定を行った。

Figure 5: Scheme of slit-scan measurement.

スリットの位置xをきめ、下流で測定したビームサイズから角度x'の分布が分かる。xをスキャンして測定し、位相空間での強度分布I(x, x')が得られる。Figure 6は、測定したI(x, x')の例である。そこから、Equation

$$\epsilon = \sqrt{\overline{x^2 x'}^2 - (\overline{xx'})^2} \tag{2}$$

angle [rad]

Figure 6: Phase space distribution measured by the slitscanner system.

4. 測定結果

4.1 入射部のエミッタンス

電子銃で、カソードの特性で決まるビームが実現出来 ていることを確認するため、10 fC/bunch 程度の低バン チ電荷で測定を行った。電子銃電圧は 390 kV である。 ソレノイドとスクリーンモニタの組み合わせを変えて、 同一のビーム条件で3 種類のセットアップで測定した。 結果を Figure 7 に示す。スクリーンモニタの水平およ び垂直方向のサイズ測定から別々に結果を得ているが、 像の回転効果がある為これらは独立では無い。これらを 合わせて、規格化エミッタンスは $\epsilon_n = 0.070 \pm 0.007 \mu$ m と評価された。

Figure 7: Emittance measurement at the gun.

今、カソード上でのレーザースポット直径は、D = 1.1mm と評価されている。エミッタンスは、カソードから 放出時の1自由度辺りの横方向の運動エネルギーの平均 $\langle E_{k_x} \rangle$ と Equation 3 の関係になる。これより、 $\langle E_{k_x} \rangle =$ 16.6 meV と見積もられ、NEA GaAs カソードで期待さ れている値が実現できている^[3]。

$$\epsilon_n = \frac{D}{4} \sqrt{\frac{2\langle E_{k_x} \rangle}{m_0 c^2}} \tag{3}$$

4.2 診断部のエミッタンス

はじめに、同一条件のビームについて低電荷で2つ の方法で測定を比較した。Figure 8 に結果を示す。測 定方法に依らず一致した結果が得られることが確認で きた。5.6 MeV まで加速後の規格化エミッタンスは、 $\epsilon_n = 0.195 \pm 0.005 \mu m$ である。入射部に比べ僅かにエミッ タンスの増大が見られるが、問題になる程度では無い。

Figure 8: Comparison of Q-scan and Slit-scan measurements at low bunch charge.

高バンチ電荷条件では、スリットスキャン法で測定を 行った。電子銃出射直後における電荷密度は、電子銃の 光陰極を励起するレーザーのパルス時間幅に依存し、こ れによって空間電荷効果の様子が変わり、エミッタンス に影響すると期待される。レーザーの運転条件として、 ガウス型の時間構造で RMS 幅が3 ps の短パルスモー ドと、FWHM幅が16psの平坦な時間構造の長パルス モードが用意されている^[2]。2種類のレーザーの条件に おいて、バンチ電荷を最大 7.7 pC/bunch (1.3 GHz 繰り 返しにおいて 10 mA に相当) まで変えてエミッタンス を測定した。結果を Figure 9 に示す。バンチ電荷が高く なるにつれて、エミッタンスが大きくなる傾向が見られ る。バンチ電荷 7.7 pC/bunch において、規格化エミッタ ンス ϵ_n =0.8 μ m が得られた。今の運転パラメータにお ける、シミュレーション計算の値を同時に示している。 レーザーが長パルスモードにおいては、エミッタンスが 改善すると期待された。しかし、垂直方向については エミッタンスが小さくなる結果が得られたが、水平方向 については改善せず、はっきりとした効果は得られてい ない。

5. 考察

レーザー長パルスモード、バンチ電荷7.7 pC/bunchに おいて、診断部スクリーンモニタで観測されたビームプ ロファイルを Figure 10 に示す。四極電磁石は全てオフ の状態でビームを輸送しており、理想的には円筒対称の プロファイルになるべきであるが、大きく歪んでいる。 バンチ電荷が高いほど、また、バンチャーの電圧が高い ほど、プロファイルの歪みが顕著になる傾向がある。水 平方向のエミッタンスが大きいのは、これを反映しての ことと思われる。今後、詳細な調査が必要である。

Figure 9: Result of emittance measurement.

Figure 10: Beam profile at diagnostic line at high bunch charge of 7.7 pC/bunch.

6. まとめ

コンパクト ERL 加速器は、入射器のコミッショニン グ運転が開始した。入射器の性能を評価するための診断 ラインが設置され、スリットスキャン法によってエミッ タンスの測定を行っている。バンチ電荷 7.7 pC/bunch に おいて、規格化エミッタンス1 µm、の最初の目標は達 成された。今期のビーム運転は一通りの立ち上げを行う ことが第一の目標で、系統的なビームの調整には時間が とれていない。詳細なビーム調整は今後の課題である。

参考文献

- [1] Y. Honda *et al.*, "LONGITUDINAL BEAM PERFOR-MANCE MEASUREMENT AT COMPACT-ERL INJEC-TOR", 第10回日本加速器学会年会,名古屋大学,2013, SUPO11
- [2] Y. Honda *et al.*, "PHOTO CATHODE LASER SYSTEM FOR COMPACT-ERL INJECTOR", 第10回日本加速器 学会年会,名古屋大学, 2013, SAP107
- [3] S. Matsuba *et al.*, "EMITTANCE AND TEMPORAL RESPONSE MEASUREMENTS OF NEA GaAs PHOTO-CATHODES", 第8回日本加速器学会年会,つくば,2011, MOPS073