位相空間制御による THz 帯マイクロバンチ生成の研究 RESEARCH ON THZ-BAND MICRO-BUNCH GENERATION BY PHASE-SPACE CONTROL

大槻祥平 *A), 栗木雅夫 B)

Shohei Otsuki*^{A)}, Kuriki Masao^{B)}

^{A)}Department of Nuclear Engineering and Management, School of Engineering, the University of Tokyo ^{B)}Graduate School of Advanced Science of Matter, Hiroshima University

Abstract

In this research, we consider formation of micro-bunches as the longitudinally discrete structure in a single bunch, which are potentially useful for coherent radiation or dielectric acceleration driver (DLA). Such micro-bunches training around THz-band can be obtained by applying an emittance exchanger (EEX) to a beam modulated transversely, where the initial transverse structures are projected to longitudinal one with a certain compression. Two most interesting points of this technique are final parameters such as frequency or width of micro-bunches are widely and easily tunable and the EEX can be made using conventional techniques. In this research we prove such micro-bunch generation is possible in frame of linear optics and by using particle-tracking simulations (GPT). A similar study was already carried out by Y. Sun(Fermilab-conf-08-408-APC), but we have conducted this research independently and we put more interests in DLA.

X – Z エミッタンス交換よるマイクロバンチ生成の原理

近年の加速器領域の興味の一つとして、小型加速器を 用いた高い時間分解能による観測、コヒーレントな相互 作用の研究をめざして短バンチ電子ビームを生成、加速 する試みが多くの研究機関で行われている.このような 研究の一つとして短バンチビームをフォトカソードによ り生成し、速度変調やエネルギー変調にによってバンチ ングにより 100fs 程度の短バンチ生成を報告している例 がある.しかしこの手法による短バンチ生成は、空間電 荷効果よるデバンチングや、エネルギー広がりや非線形 効果による原理的限界が存在し、電荷量を大幅に制限す るなどの犠牲を払わない限り、大きな進展は望めない.

他方、本研究では幅 fs,周波数 THz,電流数+Aに 容易到達しする,未だ実現されていない電子群の高繰 り返しを,既存の技術を用いて,4~5mの加速器と しては小型な装置によって実現できることを証明する. 同手法で得られるの周波数,電流値は前述方法と比較し て 10~10の数乗倍優れ,また巨大なレーザの装置を必 要としない.加えて,同手法はスリット等を機械に操作 することによって周波数のパラメータを極めて自由に 調整できるため,応用に向け非常に高い制御性が期待で きる.

本研究では、このような連続する荷電粒子群を得る ために、従来とは全く異なる手法として、ビームの進行 と垂直な方向(x方向)にバーコード状の離散分布を持 つバンチに位相空間制御を与えることにより、進行方向 (z方向)に連なるバンチ内の離散構造を生成させる手法 をとる、本研究では、このときにバンチの進行方向(z 方向)生成される個々の離散構造をマイクロバンチと定 義し、そのような構造をマイクロバンチ構造とよぶ.こ こで初期に必要な横方向の離散分布はスリットの設置、 あるいはビーム発生時のカソード表面の工夫によって形 成できるものとし、スリット幅100µm 程度、スリット 間隔 500µm 程度を想定した.図1は本研究で得られた シミュレーションにおける初期ビーム分布と、マイクロ バンチ化されたビームの *x* - *z* 空間における粒子分布の 例である.

Figure 1: real-space particle distribution of transversely shaped beam by the slit (a) and longitudinaly discrete beam attained by phase-space control (b)

本手法では、図2に示す EEX (Emittance EXchanger) と呼ばれるビームラインを応用する^[1]. このビームライ ンは中心に方形 TM₂₁₀ モード二重極空洞 (rectangular TM₂₁₀ mode deflection cavity)とその前後の2つのドッ グレッグ (曲げ角の等しい極性の異なる双極磁石 2つか らなる要素)によって構成されており、図中 D は双極 磁石の幅, S_1 はドッグレッグの双極磁石間の距離, S_2 は双極磁石とキャビティーの距離,また α は双極磁石 による曲げ角である.ここで天下り的に EEX の輸送行 列 (thin-lens 近似)を M_{EX} を導入すると,進行方向を z,水平方向を xとして,

$$M_{EX} = M_D M_C M_D$$
(1)
=
$$\begin{bmatrix} 0 & 0 & -\frac{L}{\eta} & \eta - \frac{L\xi}{\eta} \\ 0 & 0 & -\frac{1}{\eta} & -\frac{\xi}{\eta} \\ -\frac{\xi}{\eta} & \eta - \frac{L\xi}{\eta} & 0 & 0 \\ -\frac{1}{\eta} & -\frac{L}{\eta} & 0 & 0 \end{bmatrix}$$
(2)

^{*} otsuki.shohei@nuclear.jp

Figure 2: frame format of the EEX, which is composed of two doglegs, (M_D) and a rectangular TM_{210} cavity (M_C) ; D, S_1, S_2, S_3, L_0 and α are the dimension of the EEX, and M_D and M_C are the transfer matrixes

が、次の条件

$$1 + \eta k = 0 \tag{3}$$

の下で成立する.ただしここで、 M_D はドッグレッグ, M_C は TM₂₁₀の輸送行列であり、式中 dispersion η , momentum compaction ξ ,および有効長さ Lを

$$\eta = S_1 \frac{\sin \alpha}{\cos^2 \alpha} + 2 \frac{D}{\sin \alpha} \left(\frac{1}{\cos \alpha} - 1 \right)$$
(4)

$$\xi = S_1 \frac{\sin^2 \alpha}{\cos^3 \alpha} + 2 \frac{D}{\sin \alpha} \left(\frac{\sin \alpha}{\cos \alpha} - \alpha \right)$$
(5)

$$L = S_1 \frac{1}{\cos^3 \alpha} + 2\frac{D}{\cos \alpha} + S_2 \tag{6}$$

で定義している. さて上式による粒子の輸送は, EEX 通過前後の各粒子の状態をそれぞれ s_i = $^{T}[x_{i}, x'_{i}, z_{i}, \delta_{i}]$ および s_f = $^{T}[x_{f}, x'_{f}, z_{f}, \delta_{f}]$ として,

$$\begin{bmatrix} x\\ x'\\ z\\ \delta \end{bmatrix}_{f} = \begin{bmatrix} -\frac{L}{\eta}z_{i} + \left(\eta - \frac{\xi L}{\eta}\right)\delta_{i}\\ -\frac{1}{\eta}z_{i} - \frac{\xi}{\eta}\delta_{i}\\ -\frac{\xi}{\eta}x_{i} + \left(\eta - \frac{\xi L}{\eta}\right)x'_{i}\\ -\frac{1}{\eta}x_{i} - \frac{L}{\eta}x'_{i} \end{bmatrix}$$
(7)

で与えられる.式(7)では, x_f および x'_f が, z_i および δ_i のみによって,また逆に z_f および δ_f が, x_i および x'_i のみによって決定されている.結果として EEX の通 過前後でx方向とz方向の位相空間の入れ替えが実現 される.

さて,式(2)中,行列要素 $M_{51} = -\xi/\eta$ は,初期の 横方向の実空間分布xが最終的な進行方向の実空間分 布z射影されるときの比率を決め,一般に $|M_{51}| < 1$ であるので, x_i 方向ビームの広がりは圧縮されて z_f に 移されることになる.本研究では $\xi/\eta \simeq 0.1$ を選択す るが, EEX をバンチ圧縮の目的で応用する研究から, $\xi/\eta \simeq 0.05$ 程度の圧縮まで実現可能であると考えられ る^[3].

他方,ガウシアン分布で与えられるような $x_i - x'_i$ 粒子分布に対し,初期の離散構造ををできるだけ保持して z_f 構造に射影するには,式(7)の3行目から, z_f への x'_i の寄与を可能な限り小さくすることが望ましい.これをには,輸送行列から曲げ角 α と距離 S_2 を小さくする手法もあるが,続く2つの方法がより根本的であり,応用上有利である.

1 つめは EEX に続いて, momentum compacton が

$$\xi_{cmp} = -\frac{\Delta z}{\delta} \tag{8}$$

となる磁気コンプレッサーの導入により,式(7)の行列 要素 M₅₂の寄与を消去する方法である.加えてこの時 ビームの進行方向の長さは圧縮されるため,マイクロバ ンチの周波数,あるいは電流を数倍(例えば3倍程度) まで高めることができる.

2つめの方法は、初期の $x_i - x'_i$ 位相空間分布が定数 $\Lambda \varepsilon$ 用いて $x'_i \simeq \Lambda x_i$ で表されるような強い相関を積極 的に持たせることである.このとき M_{52} は進行方向の 粒子構造を乱すのではなく、進行方向にバンチを圧縮 ($\Lambda > 0$)・膨張 ($\Lambda < 0$)させる効果となって現れる.得 に応用上有用であるのは、 $\Lambda > 0$ の粒子が x 方向に発散 していく状態を導入する場合で、この場合には $x_i - x'_i$ の相関が、 z_f の粒子分布を一定の比率で圧縮する効果 となる.このような $x_i - x'_i$ 空間への相関の導入は、Q マグネットによる積極的な粒子の x 方向への発散、あ るいは粒子のドリフトの経験によって実現できる.また 特筆すべきこととして、空間電荷効果はドリフト空間で $x_i - x'_i$ 相関を強める効果を持つから、EEX 到達前の空 間電荷効果については、それを逆手にマイクロバンチの 圧縮の効果へと置き変えることも可能である.

本文では原理に触れるにとどまるが,上記2つの手 法は有用かつ確立された技術で実現できるため,実際の 製作では導入すべきである.

2. シミュレーション環境と結果の検討

前述の線形力学での検討をもとに、荷電粒子のトラッ キングシュミレーションの環境である Genaral Particle Tracer (GPT)を用いてマイクロバンチの生成が可能かを 確認した.GPT は荷電粒子の運動を5 次のルンゲ=クッ タ法、マクロパーティクルをベースとした加速器内の荷 電粒子の運動の検討に有用な環境の一つである.必要な マクロ粒子数はその変化による結果の収束性から妥当 性を評価し、空間電荷効果の影響についてはマイクロバ ンチ構造によるバンチ自身への影響を正確に扱うため、 各粒子間のクーロン相互作用を1 つひとつ計算する手 法を採用した.

またシミュレーションにおいて仮定したパラメータは 現時点で実現されている,あるいは技術的に十分に実現 可能であると考えられる値を選定している^{[1][2][3]}.

the histogram of standardized current of the bunch

Figure 3: the z-x particle distribution just after the slit (top left), and 10 cm after the EEX (top right): the generation of micro-bunch is affirmed

micro-bunch repitition	f_{mic}	6.25	THz
FWHM of micro-bunches	Δ_t	34	fs
maximum electric current	I_{max}	77	А
energy of the bunch	E	15	MeV
inititial charge	Q_0	100	pC
initial transverse emittance	$\gamma \varepsilon_{r0}$	1	μ rad
Gaussian radious of initial bunch	σ_{r0}	2	mm
opening of the slit	Δ_{opn}	0.08	mm
pitch of the slit	Δ_{intvl}	0.34	mm
resonant frequency	f_c	2586	MHz
total cavity length	S_3	315	mm
number of cells	n_c	6	個
wave propagation		$\pi/2$	mode

Table 1: Typical set of the simulation parameters and results

マイクロバンチ生成実現の証明とその基本的な特性

表1に本研究のシミュレーションに用いたパラメー タと、その時に得られたマイクロバンチのパラメータを 代表する値を示した.対応するシミュレーション結果が 図3である.図3(b)および(c)からマイクロバンチの生 成が確認できる.一方で生成されたマイクロバンチには 粒子の広がりと歪みが確認できる.このうち前者は主 にM₅₂と空間電荷効果、またパラメータの合わせ込み のずれによるもので、後者は空間電荷効果の影響である ことが分かっている. 3.1 スリットの制御によるマイクロバンチのパラメー タ制御

EEX によるマイクロバンチ生成では、スリット 幅や スリット間隔、またスリットの位置の調整によって、生 成されるマイクロバンチのパラメータを制御できる.こ の自由度は従来手法では到達そのものが難しい高繰り 返し・高強度の荷電粒子群を、スリット等の機械的制御 によって広く安定に制御できることを意味し、様々な応 用に対し有効である.

図4に示す2つのマイクロバンチ生成の例では,右 と左でスリット全体の位置を半周期分(0.25 mm)ずらし ている.スリットの位置のずれに伴いz方向に生成され たマイクロバンチはその位相が半周期だけずれている ことが確認できる.この性質は任意のパラメータをもつ EEXで共通である.これはスリット位置を機械的に制 御することによって,マイクロバンチの位相を調整でき ることを意味している.

Figure 4: micro-bunch phase tuning by slit shifting; the timings each micro-bunch arrives are tuned with half period by shifting the slit with the coresponding amount.

また明らかなことながら、スリット幅の変更によって 生成されるマイクロバンチ幅の制御も可能である.

3.2 EEX 通過中の空間電荷効果によるマイクロバンチ 構造の乱れ

空間電荷効果によっては、マイクロバンチの歪みが 発生することが確認された図 5. 例えばバンチエネル ギー 15 MeV の運転においては、スリット 通過前のバン チ電荷がおよそ 100 pC 以上の場合に構造の乱れが顕著 となった.(しかしながら、この場合ではバンチ電荷 100 pC のシミュレーションでは前述の 78 A という強力な 電流を実現している.)バンチのエネルギーが 150 MeV の場合には、初期電荷 1 nC の高電荷密度のバンチにお いても空間電荷効果の影響は確認できなかった.

マイクロバンチの誘電体加速ドライバへの応用

以上における議論から EEX を用いたマイクロバンチ 生成の実現性は非常に高く、加えて同手法によって生成 されるマイクロバンチは従来のバンチの高繰り返し発 生と比較して桁違いに短いバンチ幅,高い高周波,また 高い最大電流を実現できる。加えてスリット幅の調整等 により、従来とはことなる機械的操作によって、非常に 自由なパラメータの変更できる.このような特性は例え ばマイクロバンチの誘電体加速のドライバとしての応

Figure 5: comparison of deterioration coming from spacecharge effect when the beam energy is 15 MeV; from the left, the initial bunch charge (before the slit) is 100 pC, 1 nC,

用, 高効率 THz-FEL への応用, また Smith-Purcell 放射 への応用に有望である.

標準的な粒子加速器は金属空洞に 1 ~ 10 GHz 程度 の高周波を閉じ込め,内部に数 10MV/m 程度の電場を 励起して加速をおこなう。それに対して従来より極めて 高い加速勾配を得る方法の一つとして誘電体加速が研 究されている.誘電体加速ではより波長の短い THz 帯 の電磁波により誘電体構造に内に加速電場をつくり,そ れにより粒子を加速する.この様な THz 帯の電磁波は 金属の加速空洞での境界条件の確立が困難なため,µm オーダーの微細構造をもつフォトニッククリスタル等の 誘電体で極めて高い加速電場を実現する手法などが提 案されてきた.

他方レーザプラズマ加速では,異なる手法により ~ 数 GV/m の加速勾配をすでに実現している.レーザプラ ズマ加速は気体プラズマ中でレーザーを収束させ,プラ ズマの粗密構造がつくるポンデロモーティブカにより プラズマ中に含まれる一部の電子を極めて強力に加速 する.

しかしながらこれらの手法には加速器として実用化 を行う上で多くの課題が存在するのが現状である.

ー方レーザドライブの誘電体加速では同期は原理的 な問題ではない.今後の研究次第では,誘電体加速空洞 間での同期も含めて,有用な加速手段として確立される 期待がある.ただしレーザドライブの誘電体加速が今日 まで実現されていない背景には,数μmオーダーの結晶 構造へのレーザの導入,あるいは微小な構造へのビーム の通過の困難がある.また同期に原理的困難はないが, 波長が短い分だけ RFにおける同期に比して技術的には 難しくなる.このような問題は波長として現実的な長さ をもつ THz 帯のレーザの導入によって解決されるよう に思われるかもしれないが,この領域には現在のところ 実用に耐えうるコヒーレント光はない.

図6に模式的に示すマイクロバンチドライブによる 誘電体加速は上記の問題の解決案の一つである.この手 法では、まず~100µm 程度の構造をもつ誘電体空洞に マイクロバンチを通過させる.このときにマイクロバン チの周波数と空洞の共振周波数を一致させることによっ て、マイクロバンチが空洞に残す強力なエネルギーを空 洞に蓄積する (a).この状態で新たなバンチが空洞を通 過すると、マイクロバンチによって励起された強力な電 場 (b)によって後から通過するバンチを加速できると考

えられる (c). 本研究で検討した THz 帯のマイクロバン チに対応する加速空洞内の構造は前述の ~ 100μm 程度 であり、レーザドライブの場合と比較して、格段に大き いバンチ電荷の許容量を実現できるものと考えられる. またマイクロバンチの通過とその後のバンチの通過と の同期は困難に思われるしれないが、実際にはマイク ロバンチによる誘電体加速では他の手法にはない有益 な特徴によってこの問題を解決できる可能性が高く,他 飛べば示したスリットの x 方向の位置制御によってマ イクロバンチによる空洞の励起位相と次に通過するバ ンチの同期が可能である.このような特性は、例えば大 型加速器を念頭においた場合には、システム間の同期 の問題を回避する手段として有効である. あるいは異 なる運転の方法として、連続するマイクロバンチの最 後尾の位相をずらして、これを加速位相に乗せること を考えれば原理的には非常に簡単に同期が可能である. 以下では期待される加速勾配の概算を試みる.

(a) transition of micro-bunches

(b) strong field-wake with ~THz frequency

(c) acceleration of another bunch

~ 100 times stronger than today's RF acceleration

Figure 6: マイクロバンチドライブによる誘電体加速の 概念図

4.1 シャントインピーダンスによる加速勾配の概算

粒子と空洞が特定の共振モードの関係を満たすよう な場合,初めの粒子につづいて空洞に入る粒子に有意な 影響を与える非常に強力な wake-field が発生することが 知られている.この wake-field は一般には加速空洞にお ける不安定要素であるが,マイクロバンチドライブの誘 電体加速は,逆に wake-field を利用して強力な加速勾配 の実現を目指すアイデアである.

まず,加速効率を表す量としてとシャントインピーダ ンス R および Q 値 Qを導入する.これらは加速空洞 の形状や運転角周波数ωによって決定される量であり, 一般にωに対して次の関係をもつ.

$$R \propto \sqrt{\omega}$$
 (9)

$$Q \propto \frac{1}{\sqrt{\omega}}$$
 (10)

さて, f = 3 GHz での加速空洞のシャントインピーダ ンスを $R = 5.0 \times 10^7 \omega$ とすると, f = 10 THz のマイ クロバンチ周波数に共振する空洞にスケールしておよそ

$$R = 3 \times 10^9 \ \omega \tag{11}$$

程度が期待できる. さてここで,E = 150 MV/m 1 ps のバンチが 10 THz繰り返しで来るとき、そのエネルギー がすべて誘電体にウエークとして落とされるとすると, その電力は

$$P = 150 \times 10^6 \frac{1 \times 10^{-12}}{1 \times 10^{-13}}$$
 W (12)

$$= 1.5 \times 10^9$$
 W (13)

概算できる.これが仮に 1m の誘電体に充満すると仮定 すれば,

$$E = \sqrt{1.5 \times 10^9 \cdot 3 \times 10^9} \text{ V/m}$$
 (14)

$$= 2.1 \times 10^9 \text{ V/m}$$
(15)

となり、およそ 2GV/m が試算される. 上記の計算では、 あくまでバンチが続いたとしても、その平均からパワー が決まるために電場が重複しないと考えられること、ま た、単独のバンチの作る瞬間電場は大きいが、平均電力 は小さいので、そのその小さいパワーを重複した値は導 出した値と等しくなることを想定している.

上記の議論は強力な仮定や,曖昧な箇所を多く含む が,少なくともマイクロバンチドライブの誘電体加速が レーザプラズマ加速に違いオーダーの加速勾配を実現 できるであろうことは示唆している.

4.2 アフターバーナーを念頭においた同期特性

マイクロバンチドライブの誘電体加速の最大の利点 の一つは、上記で予想されるような強力な加速勾配をも つ空洞が非常によい制御・同期性能の下に実現できると 考えられる点である.

一つ目は従来の加速空洞の同期における複雑な周波 数制御を、ビームを切るスリット位置の調整のみで実現 できることであり、前述のスリットと位相および周波数 の関係から指示される。例えば本研究のパラメータで は、スリット全体の位置をおよそ 0.075 mm ずらすこと によって、マイクロバンチの通過位相を 5°だけ調整す ることができる。加えてこの手法による位相制御は、ど のような高い圧縮(小さい M_{51})に対してもスリット 位置を調整する精度が 1% であれば、生成されるマイク ロバンチの位相も、バンチの圧縮に依存せず、1%の精 度で制御できる特徴がある。

二つめは x - x' 相関による周波数制御および乱れの 低減が可能な点である.マトリックスにおける議論か ら、スリット入射前のビームに長時間のドリフト空間あ るいは四重極磁石等の導入によって鋭い相関を持たせ ることにより、EEX で決定さる圧縮係数に対し、実際 に生成されるマイクロバンチの圧縮の度合いを制御さ せることができることが分かる.またこのとき,原理的 にはQマグネット等によりビームをx方向へ広げるこ となどにより,空間電荷効果によるバンチの発散を低減 する,あるいは空間電荷効果によるビームの広がりを, 周波数の変化に落とし込むことが可能である.

5. 結論

本研究ではバンチの加工と特定の位相空間回転制御 の応用により、マイクロバンチ(バンチ内の進行方向の 離散構造)の生成が可能であることを輸送行列による議 論により 原理的な理解を試み,加えて 3 次元粒子トラッ キングシミュレーションによりそれが実現可能であるこ とを示した.シミュレーションでは15 MeV のバンチを 0.5 mm 間隔で並ぶスリットに通し,続けて EEX によ る位相空間制御を与えることにより、バンチ内にマイク ロバンチおよそ 10 個が, 周波数 6.3 THz, 幅 (FWHM) 34 fs,最大電流 78 A で等間隔に並ぶ様子が確認できた. これらの数値はバンチの高い繰り返しによって今日ま でに実現されてきた高周波,短バンチ幅,最大電流と比 較して 10 倍以上優れている.加えてこれらのパラメー タは, ビームラインの最適化, 初期エネルギーの増加, 磁気圧縮セクションの導入によって更なる向上が可能で ある.

またそれらの結果を用いてより、本方式によるマイク ロバンチ構造の生成の特性を定性・定量的に評価した. 加えて、マイクロバンチの応用例の一つとして、誘電体 加速のドライバとしての応用を取り上げ検討した.加速 勾配の定量的な評価には課題が残るが、ビームドライブ 誘電体加速方式は、レーザプラズマ加速と比較し非常に 高い制御性・繰り返しが可能であること、またレーザド ライブ誘電体加速と比較し技術的な困難の多くが既に 解決されていること等に利があり、将来的に現在の RF 加速に代わるより高加速勾配加速をいち早く実現する 手段となり得る.

6. 謝辞

この研究の一部は2012年度広島大学卒業研究として, 栗木雅夫教授の下で進められ,また,同研究の一部は科 研費基盤 C(25390126)の下で行われました.ここに深 く感謝いたします.

参考文献

- P. Emma, Z. Huang, K.-J. Kim, P. Piot, "Transverse-to-Longitudinal Emittance Exchange to Improve Performance of a High-Gain FEL," Phys. Rev. ST Accel. Beams 9, 100702 (2006), http://slac.stanford.edu/cgi-wrap/getdoc/slac-pub-12038.pdf
- [2] Yin-e Sun and Philippe Piot, "GENERATION OF FEMTOSECOND BUNCH TRAINS USING A LONGITUDINAL-TO-tRANSVERSE PHASE SPACE EXCHANGE TCHNIQUE," Oct. 2008 Fermi Lab. Conf. http://lss.fnal.gov/archive/2008/conf/fermilab-conf-08-408apc.pdf
- [3] B. E. Carlsten, "USING AN EMITTANCE EXCHANGER AS A BUNCH COMPRESSOR," Proceedings of 2011 Particle Accel. Conf., https://accelconf.web.cern.ch/AccelConf/PAC2011/papers/ wep033.pdf