NIRS-930 におけるビームのシミュレーション BEAM SIMULATION FOR NIRS-930

中尾 政夫^{#, A)}, 北條 悟^{A)}, 片桐 健^{A)}, 杉浦 彰則^{A)}, 野田 章^{A)}, 後藤 彰^{B)}, 本間 壽廣^{C)}, Smirnov Victor^{D)}, Vorozhtsov Sergey^{D)}

Masao Nakao^{#, A)}, Satoru Hojo^{A)}, Ken Katagiri^{A)}, Akinori Sugiura^{A)}, Akira Noda^{A)}, Akira Goto^{B)},

Toshihiro Honma^{C)}, Victor Smirnov^{D)}, Sergey Vorozhtsov^{D)}

^{A)} National Institute of Radiological Sciences

^{B)} Yamagata University

^{C)} Accelerator Engineering Corporation

^{D)} Joint Institute for Nuclear Research, Russia

Abstract

Beam simulation with SNOP code has been performed for the cyclotron NIRS-930 at NIRS in order to study beam dynamics in a cyclotron. Each electric or magnetic field (main coil, trim coils, harmonic coils, magnetic channel, gradient corrector, grazer lens, Dee gap, Inflector) were calculated by OPERA-3d, and simulated injection, acceleration, and extraction. The simulation of proton with 30 MeV extracting energy with harmonic 1 was already performed and well simulated RF phase and extraction efficiency. Now we are trying to apply SNOP to 18 MeV protons with harmonic 2.

1. はじめに

放射線医学総合研究所において、サイクロトロン の大強度化を目指して、サイクロトロン内でのビー ムの挙動を調べるためにビームシミュレーションを 行っている。シミュレーションのプログラムとして は、SNOP[1]を利用した。SNOP のシミュレーショ ンは既に 30 MeV、ハーモニック 1 の陽子について NIRS-930 サイクロトロンの、サイクロトロン内での 位相、粒子が失われる位置の比率、出射されたビー ムのエミッタンスといったパラメータを再現するこ とが示されている[2]。他のエネルギーやハーモニッ クの粒子でもシミュレーションが有効であることを 確認するため、ハーモニック 2 である 18 MeV の陽 子についてシミュレーションを行った。

SNOP によるビームシミュレーション の手法

2.1 NIRS-930 のモデル化

Figure 1 に NIRS-930 の 3D モデルを示す。サイク ロトロンには上方からインフレクターの電場を利用 してビームを入射する。インフレクターの形状と電 場は 3 次元の情報として構成される。NIRS-930 の電 磁石は、4 つのスパイラルセクターを持つ。コイル はメインコイルの他に、12 対のトリムコイル、入射 側に 4 対、出射側に 4 対、合計 8 対のハーモニック コイルにより構成される。また、ディー電極の角度 は 86 度である。取り出し半径は 920 mm であり、

[#] nakao m@nirs.go.jp

ビーム取出し機器として静電デフレクター、マグネ ティックチャンネル、グラディエントコレクターが ある。

Figure 1: Schematic drawing of NIRS-930 model.

2.2 3次元磁場分布データの作成

メインコイルと 12 個のトリムコイルの全てのソ レノイドによる磁場は、鉄芯の磁気特性を考慮に入 れるように、TOSCA[3]を用いて 3 次元の磁場計算 を行って求める。また、入射側ハーモニックコイル の磁場も TOSCA によって計算する。それらの円柱 座標系での出力結果を SNOP に入力する。一方で出 射側ハーモニックコイル、マグネティックチャンネ ルの磁場は、SNOP にコイルのパラメータを入力す ることで TOSCA によって計算され、全ての磁場が 足し合わされる。これらの磁場に係数をかけること で磁場の調整が行えるが、トリムコイルを変更した 場合には TOSCA による磁場の再計算が必要になる。 Figure 2 にメインコイルによる動径方向一周の平均 磁場、Figure 3 に各トリムコイルに流した電流密度 あたりの磁場を示す。

NIRS-930 の電磁石を構成するコイル、磁極やヨー クは鉛直方向に面対称、中心軸の周りに 2 回対称で あるため、磁場を計算する際にこの対称性を利用し て全体の磁石の 1/4 について磁場を計算した。

Figure 2: Average magnetic field made with main coil.

Figure 3: Average magnetic field variation per current density of each trim coil.

2.3 入射する粒子の生成

入射する粒子は入射エネルギー、計算開始時刻に おける位置を変えてシミュレーションすることがで きる。また、計算開始時刻における RF 位相を変え ることでも、粒子の進行方向の初期条件を変えるの と同じ効果が得られる。

3. ビームシミュレーションの現状

3.1 30 MeV の陽子のシミュレーション

30 MeV の陽子について SNOP でシミュレーショ ンした軌道を Figure 4 に示す。ビームが最外周まで 加速され、静電デフレクター、マグネティックチャ ンネル、グラディエントコレクターを通って出射し ている様子が分かる。

Figure 4: Simulation result of the orbit of successfully extracted 30MeV proton.

3.2 18 MeV の陽子のシミュレーション

NIRS-930 では 30 MeV の陽子の加速はハーモニッ ク1で、18 MeV の陽子の加速はハーモニック2 で 行うので単純にエネルギーの差だけではなくハーモ ニックによる違いがある可能性がある。18 MeV の 陽子のシミュレーションを行うにあたって、まず実 際の運転パラメータを SNOP に入力した。SNOP は 空間電荷効果をシミュレーションすることができる が、今回はまずビームを出射することが目標である ので、1 粒子または空間電荷効果を考慮に入れない バンチの設定でシミュレーションを行った。その結 果、z 軸方向のベータトロン振動の振幅が入射直後 で 6 mm 程度であり(30 MeV の場合は 1 mm 以下)、 中心から半径 700 mm 程度に到達するとさらに振幅 が増大し、上下のチェンバー壁に衝突してビームが 失われてしまった。入射直後の振動は、インフレク ターの電圧(位置と角度は固定していた)や陽子の入 射電圧を最適化することで Figure 5 のように 2 mm 程度にすることができた。しかしながら、入射の条 件の改善ではビームが半径 700 mm 付近に到達する と急速に振動して失われる問題は解決しなかった。

3.3 z 軸方向に粒子が大きく振動して失われる問題 と等時性磁場の最適化

ビームが z 軸方向に振動し、上下の壁に衝突して 失われてしまう原因は、等時性磁場から大幅に磁場 がずれているので phase が理想的な位置から大きく ずれたからであると推測される。Figure 6 に粒子が ディー電極の中心にある時の phase のずれを示す。 Figure 5 で z 軸方向の振動が大きくなり最終的に粒 子がチェンバー下面に衝突して失われているが、 Figure 6 ではその直前に位相が大きくずれていくの が分かる。また、Figure 5 で一時的に振動が大きく なっている部分が Figure 6 における位相のずれの極 大値に相当する。このような不安定性を防ぐように、 トリムコイルの電流値を調整することで、良い等時 性磁場を作成する必要がある。

Figure 5: Time variation of axial particle position in case of axial oscillation.

Figure 6: Turn number dependence of RF phase shift when the particle is at each center of Dee.

理論的に計算された、理想的な等時性磁場[4]は Figure 7 の破線で示された曲線である。この曲線と 中央部を除く範囲で一致するような磁場を TOSCA で作成したところ Figure 7 の実線で示された分布に なった。この磁場を用いて 18 MeV の陽子のシミュ レーションを行ったところ、Figure 8 のように、最 外周までおよそ 1 mm 以下の振動に収まる結果と なった。Figure 9 に示されたように、この条件にお ける加速位相のずれは、入射直後を除いて 10 度以 下になっている。等時性磁場の改善によって位相の ずれが小さくなったことで、陽子が安定した軌道で 加速されるようになったと考えられる。

Figure 7: Average magnetic field in comparison with isochronous field.

Figure 8: Time variation of axial particle position in case of axial oscillation with revised magnetic field.

Figure 9: Turn number dependence of RF phase shift when the particle is at each center of Dee with revised magnetic field.

3.4 多数の粒子のシミュレーション

360 個の陽子を、入射時の RF 位相を 1 度ずつ変 化させた際に粒子が失われる位置をサイクロトロン の上方から見た図にプロットしたものが Figure 10 で ある。これらの粒子のうちインフレクターで失われ たものが 70%、サイクロトロンの内側で失われたも のが 9%、外周まで周回したものが 21%であった。 この方法でイオン源から連続的にビームが入射され た場合、入射されたビームのうち加速された位相の 部分を推定することができる。今後入射ラインのバ ンチャーを考慮に入れてアクセプタンスを計算する ことを考えている。

Figure 10: Points where the particles lost (view from above).

4. まとめ

NIRS-930 におけるビームのシミュレーションを、 SNOP を用いて行った。加速する陽子のエネルギー とハーモニクスは 30 MeV, h = 1 と 18 MeV, h = 2 と した。30 MeV のシミュレーションについては実際 の運転パラメータと比較を行っているが、今後 18 MeV の条件についても比較する予定である。また、 多数の粒子のシミュレーションによる位相アクセプ タンスの計算なども行っていく予定である。

参考文献

- [1] V.L. Smirnov, S.B. Vorozhtsov, Proc. of RUPAC2012 TUPPB008 325 (2012)
- [2] V.L. Smirnov et al., Proc. of IPAC2012 292 (2012)
- [3] https://www.cobham.com/about-cobham/aerospace-andsecurity/about-us/antenna-systems/specialist-technicalservices-and-software/products-and-services/designsimulation-software/opera/opera-3d.aspx
- [4] M. M. Gordon, Particle Accelerators Vol. 13 pp. 67-84 (1983)