第10回加速器学会年会 2013年8月3日

EOタイミング制御によるHHGシードFELの持続的発振

渡部貴宏^{A),B)}, 青山誠^{C)}, 岩崎純史^{D)}, 大竹雄次^{B)}, 大島隆^{B)}, 岡安雄一^{A),B)}, 小川奏^{B)}, 大和田成起^{D)}, 佐藤尭洋^{D)}, 富樫格^{A)}, 渡川和晃^{B)}, 原徹^{A),B)}, 田中隆次^{B)}, 冨澤宏光^{A)}, 松原伸一^{A)}, 高橋栄治^{B)}, 緑川克美^{B)}, 矢橋牧名^{B)}, 山川考一^{C)}, 山内薫^{D)}, 田中均^{B)}, 石川哲也^{B)}

^{A)} JASRI, ^{B)} 理研, ^{C)} JAEA, ^{D)} 東京大学

1. SCSS試験加速器

2. SASE vs シードFEL

- 3. HHGシードFEL&EO実験体系
- 4. 結果・まとめ

SCSS試験加速器(SPring-8)におけるFEL実験

250 MeV Linac + In-vacuum undulator

SASE

- Spontaneous emissionを増幅
- Transverse方向:コヒーレント
- Longitudinal方向:部分コヒーレント
- ・ショット毎に揺らぐ

Seeded FEL

- ・外部レーザー(コヒーレント光)を増幅
- Transverse方向:コヒーレント
- Longitudinal方向:コヒーレント
- ショット毎に揺らがない(原理的には)

SASE vs Seeded FEL

Pierce parameter:

$$\rho = \left[\frac{1}{16} \frac{I_e}{I_A} \left(\frac{K[JJ]}{1 + K^2/2}\right) \frac{\gamma \lambda_r^2}{\Sigma_A}\right]^{1/3} \approx 10^{-3}$$

Gain length (1D):

$$L_{G0} = \frac{\lambda_u}{4\pi\sqrt{3}\,\rho}$$

Saturation power:

$$P_{sat} = \rho P_{e-beam}$$

<u>原理的にはSeeded FELは長所多数。実験的には課題あり。</u>

課題1: 短波長領域のコヒーレント光をどうやって出すか? → Self-seeding or HHG(今回の発表) 課題2: 実験的な不安定性(揺らぎ)をどう抑制するか? → 今回の発表

61nmという短波長でのシード発振は1つの成果 一方で、持続的な発振/より高いゲインという課題も確認

EOサンプリングによるタイミング制御

電子バンチがEO結晶付近を通過 → 同時に通過していたレーザーの偏光が変調 → 変調を受けた波長から電子のタイミングを同定

8/5(月)11:10~11:30 MOOS04 @ シンポジオン会議室 岡安雄一「有機ポッケルスEO結晶を用いた電子バンチ電荷分布測定(1)」

EOサンプリングによるタイミング制御

EOシグナル 電子ビームとレーザーパルスの 相対的なタイミングのドリフト 1.0 ベストタイミング 0.8 Arrival time delay / ps 05-01-01-0 Intensity [a.u.] +1ps 0.6 -1ps 0.4 0.2 0:00 1:002:00Time 0.0 800 796 804 808 2時間で15psのドリフト(一例) Wavelength [nm] 1 ps = 0.5 nm

EOタイミング制御による持続的シードFEL発振

2010年(EOタイミング制御なし)

2012年(EOタイミング制御あり)

* Seed pulse energy ~ 2 nJ

出力FELパルス ショット毎の揺らぎ

スペクトル ~ シードFEL vs. SASE ~

シードFEL: 1スパイクで、強度が強く、バンド幅が狭い SASE FEL: スパイクが多数あり、強度が弱く、バンド幅が広い

Output energy of amplified 13th-order harmonic pulses

まとめ

- ・61nmのシードFEL実験
- ・持続的な発振のため、EOタイミング制御を導入
- ・結果、持続的発振 & ゲイン上昇
- 一方、ジッター(<1ps)が残った

	2010	2012
	(w/o feedback)	(w/ feedback)
最大出力エネルギー	1.3 μJ	20 µJ
有効ヒット率	0.3 %	20 – 30 %
FELゲイン	x 650	x 10 ⁴
発振持続時間	< 10 min.	> ½ day

・2次高調波FEL(@30nm)の発振も確認

トピック

- 1. SCSS試験加速器
- 2. SASE vs シードFEL
- 3. HHGシードFEL&EO実験体系
- 4. 結果

持続発振/有効ヒット率の増大 出力パルスエネルギーの増大 2次高調波発生

謝辞

SCSSのセットアップ、調整、実験に関わった運転員等、多くの方々