光蓄積共振器を用いたレーザーコンプトン散乱 X 線源の開発*

DEVELOPMENT OF A COMPACT X-RAY SOURCE VIA LASER-COMPTON SCATTERING USING AN OPTICAL SUPER-CAVITY

坂上和之^{#, A)}, 鷲尾方一^{A)}, 荒木栄^{B)}, Aryshev Alexander^{B)},

浦川順治^{B)},照沼信浩^{B)},福田将史^{B)},三好敏喜^{B)}

Kazuyuki Sakaue ^{#, A)}, Masakazu Washio^{A)}, Sakae Araki^{B)}, Aryshev Alexander^{B)}, Junji Urakawa^{B)},

Nobuhiro Terunuma^{B)}, Masafumi Fukuda^{B)}, Toshinobu Miyoshi^{B)}

^{A)} Research Institute for Science and Engineering, Waseda University

^{B)} High Energy Accelerator Research Organization (KEK)

Abstract

We have been developing a laser-Compton scattering (LCS) X-ray source using a normal conducting rf linac and pulsed-laser storage cavity at KEK-LUCX. The electron beam is produced by 3.6 cell rf photocathode gun and accelerated up to 23 MeV by the standing wave booster linac. The optical storage cavity, which has 4-mirrors bow-tie type cavity system with about 8m round trip, is located after the booster and electron beam scatters the 1µm laser photon in the optical cavity. The expected LCS X-ray energy is 9 keV in this setup. The round trip time is synchronized with electron bunch repetition of 2.8 nsec, thus the all multi-bunch electron beam can be interact with laser pulses. We have already succeeded in generating LCS X-ray with 1.8×10⁷ photon flux, which is more than 100 times larger than before, in this setup. Moreover, we firstly tested SOI (Silicon-on-Insulator) pixel sensor for LCS experiment. SOI sensor was expected to have higher S/N, higher spatial resolution and availability of X-ray spectrum measurement. Using SOI sensor, we confirmed good S/N detection of LCS X-ray and demonstrated spectrum measurement and high resolution images. We will report our LUCX system, results of LCS X-ray generation experiment and future prospective in this conference.

1. はじめに

我々は KEK に設置された常伝導小型電子線形加 速器を用いたレーザーコンプトン散乱(LCS)X 線源 (LUCX)の開発を行っている。LUCX では S-band 線 形加速器を用いたマルチバンチ電子ビームを生成し ており、このバンチ繰り返しと同期したレーザー蓄 積共振器内で増幅したレーザー光との衝突によって 高輝度 X 線の生成を行っている。昨年度までにマル チバンチビームとレーザー蓄積装置による LCS X線 の生成には成功しており^[1]、X 線によるイメージン グも開始している。^[2]これらの成功を受けて昨年度 より電子加速器・レーザー蓄積装置両面からの改良 を行ってきた。電子加速器としては、電子銃を従来 の 1.6Cell RF 電子銃から 3.6Cell RF 電子銃に置き換 え、電子銃後のエネルギーを増強するとともにブー スター加速としても定在波管を用いることによって ビームローディングによるマルチバンチ電子ビーム のエネルギー補正を容易にした。レーザー蓄積装置 としては、従来の2枚ミラー共振器から4枚ミラー から成る Bow-tie 型の共振器を採用し、周長も約8m と長くすることによって共振器ミラー上のプロファ イルを拡大し、破壊閾値を緩和することを目指した。 現在までに両方のアップグレードが完了し、LCS 実 験を行うに至っている。X 線 Flux の増強も確認でき たとともに、量子ビーム基盤技術開発プログラム^[3]

*Work supported by the Quantum Beam Technology Program of $\ensuremath{\mathsf{MEXT}}$

内で開発されてきた SOI (Silicon-on-Insulator)ピクセ ルセンサを初めて試験することによって新たな知見 を得ることができた。本講演では電子ビーム・レー ザー光のアップグレード状況、LCS X 線生成試験結 果及び今後の展望について報告する。

2. LUCX 加速器システム

LUCX 加速器システムは前述の通り、フォトカ ソード RF 電子銃と S-band 定在波管を用いた常伝導 線形加速器システムとなっている。光陰極に高周波 と同期したパルス列を照射することによって現時点 で最大 300Bunch/train のマルチバンチビームを生成 している。以下の Fig. 1 にシステムの全体図を、

[#] kazuyuki.sakaue@aoni.waseda.jp

Tab. 1 に生成している電子ビームのパラメータを示 す。

Table 1: LUCX electron beam parameters at LCS	
collision point	

Energy	~28 MeV (23 MeV)
Charge	1.37nC
Bunch space	2.8nsec
Num. bunch	~300 (210)
Beam size (H)	85µm (rms)
Beam size (V)	95µm (rms)
Bunch length	15ps (fwhm)
Emittance (H)	10πmmmrad
Emittance (V)	7πmmmrad
Energy Spread	0.12%
Energy Diff.	0.06%

加速器システムの詳細に関しては Ref. [4]を参照され たい。Fig.1に示す通り、フォトカソードRF電子銃 によって生成された電子ビームは定在波管によって 28MeV まで加速される。その後四極電磁石によって 光共振器内の衝突点に収束され、蓄積されている レーザー光と LCS を行う。LCS X 線は衝突点後に 設置された偏向電磁石によって電子ビームと分けら れ、X線検出器へと輸送される。Tab.1を見てわか るとおり、LUCX 加速器システムはマルチバンチ電 子ビームを生成できる装置となっており、現時点で 最大 300Bunch/train が生成可能である。Tab. 1 内の 括弧で示した値は今回 LCS X 線試験を行った際の値 となっている。また、注目すべき点として、電子 銃・加速管両方にほぼ Q 値の同じ定在波管を用いた ことによってマルチバンチ間のエネルギー差が非常 に小さく抑えられていることを挙げておく。

3. レーザー蓄積共振器

3.1 レーザー蓄積装置

次に衝突用レーザー蓄積装置に関して述べる。 レーザー蓄積装置は超高精度ミラーによって形成された共振器内においてレーザーの光を同位相で重ね あわせることによって入射レーザー光よりも非常に 強いレーザーパルスを得ることが可能となる。特に 加速器ビームの繰り返しと同期したレーザー光を種 光として用いることによってすべての電子バンチと のLCS 衝突が可能となり、非常に高輝度・高強度な X線が生成可能となるシステムである。^[5]以前まで は 2 枚のミラーによって構成された共振器を用いて いたが、今回 4 枚のミラーによる Bow-tie 型の共振 器を設計し、設置した。以下の Fig. 2 にその概念図 を示す。Fig. 2 に示す通り、共振器の周長を長くと ることと電子ビームの衝突点 - 収束電磁石間の距離 を短くすることを同時に成立させるために光共振器 と電磁石が一体となった構成となっている。光共振

Figure 2: Drawing of a 4-mirror bow-tie type optical storage cavity.

器の周長を長くすることによってミラー上における レーザーサイズを大きくし、これまでレーザー蓄積 強度を制限していたミラーの破壊を回避するように 設計されている。以下の Tab. 2 に衝突点における レーザーパルスのパラメータを示す。

Table 2: LUCX laser parameters at LCS collision point

Wavelength	1064nm
Pulse energy	423µJ
Peak power	151kW
Pulse space	2.8nsec
Beam size (H)	89µm (rms)
Beam size (V)	85μm (rms)
Pulse duration	7ps (fwhm)
Cavity finesse	335

共振器内では電子ビームとの衝突時にパワーとして 150kW 以上が蓄積され、400µJ 以上のパルスが周回 していることになる。レーザー光の衝突サイズとし ては、現状では調整不足であり、80µm 程度となっ ている。Tab. 1 と Tab. 2 を比較してわかるとおり、 電子ビームとレーザー光の繰り返しは一致しており、 すべての電子バンチが LCS 衝突を実現できることが わかる。

3.2 タイミングシステム

LUCX 加速器では新たな試みとして、レーザー光 を基準信号とした加速器タイミングシステムを用い ている。非常に特徴的なシステムであるため、ここ で詳細を述べておきたい。以下の Fig. 3 に LUCX に おけるタイミングシステム(b)と従来の加速器のタイ ミングシステム(a)を示す。(a)は従来のシステムと なっており、高精度高周波信号発生器からの信号に 加速器システム、レーザーシステム等全てが同期される。しかしながら、レーザー蓄積装置を用いた 我々のシステムではこのようなシステムでは共振器 の運転が非常に困難となる。レーザー蓄積装置は非

(b) Laser oscillator based timing system

Figure 3: Diagram of an accelerator timing system.

常に高精度の共鳴維持制御が必要となり、我々のシ ステムに置いてはオングストローム以下の精度が要 求される。これに加え高周波信号に対する同期を加 えると共振器周りの制御が非常に困難であった。そ こで(b)図に示すような光蓄積共振器に入射する種光 を全ての基準とした高周波システムを構築し、運転 を行っている。共振器の制御はこれまでの高周波と の同期以上の精度であるため、問題は観測されてい ない。電子ビームとレーザー光の同期精度も従来同 様 0.3~0.4ps (rms)程度である。このようなタイミン グシステムの導入により非常に簡便かつ安定な LCS X線生成システムとなっている。

4. LCS X 線生成試験

4.1 LCS X 線強度

2 章・3 章において述べた改良後の加速器システムを用いた LCS X 線生成試験を行った。LCS X 線検 出はこれまでの知見もあり非常に円滑に行うことができた。Tab. 1 及び Tab. 2 に示した電子ビーム・レーザー光のパラメータから計算される X 線のエネルギーは最大 9keV 程度であり、検出器には約 8%bandwidth の X 線が入射される。検出された X 線 の数より生成された X 線 Flux を見積もると、 $1.8 \times 10^7 \text{ph./sec/totalbandwidth}$ であった。改良前の X 線 Flux が 10^5 程度であったことから、すでに 100 倍 以上の高強度化に成功していることがわかる。目標 としてはさらに 10 倍であったため、まだ改良途中 の項目などを行うことで達成していく予定である。

4.2 SOI 検出器を用いた LCS X 線試験

改良後の LUCX システムにおいて LCS X 線の検 出を確認できたため、量子ビーム基盤技術開発プロ グラム内で開発された SOI センサを用いた検出試験 を行った。SOI センサとは、絶縁体を介して2枚の シリコンウェハを接続する技術であり、X 線検出部 のシリコンと X 線信号読み出し回路を刻むシリコン を同じ基盤にのせることができる。読み出し回路を リソグラフィ微細加工技術を用いて製作することに よって非常に空間分解能の高い検出器が実現できる とともに検出部と読み出し部を一体化させることに よって高 S/N での X 線検出が期待できる。^[6]また、 ピクセル毎の出力強度を校正しておくことにより、 検出した X 線のスペクトルも同時に検出することが 可能である。LCS X線に SOI 検出器を用いるのは初 めての試みであり、非常に有用な知見を得ることが できた。以下の Fig. 4 に SOI センサによって検出さ れた X 線のスペクトルを示す。黒塗りのプロットが

Figure 4: LCS X-ray spectrum.

衝突用レーザーを ON とした場合、白抜きのプロットがバックグラウンドスペクトルを示している。両者を比較することによって約 8~9keV 付近にピークが現れていることがわかる。これらのスペクトルの積分値から S/N を評価すると、10 程度であった。これまで非常に実績のある MCP (Micro-Channel Plate)において同様の検出をすると、1 程度の S/N であったことを考えると非常に高 S/N であることがわかる。また、X 線のエネルギーに注目すると、ほぼ計算値通りの 9keV の X 線が検出できていることがわかる。予想される X 線のエネルギー幅は 8%程度であったが SOI センサによるエネルギー幅は 30%程度であることがわかる。これは検出器側のエネルギー分解能に依存すると考えている。

次に SOI センサを用いた X 線イメージングを試み た。前述の通り、SOI センサは非常に小さいピクセ ルサイズを実現できる(ピクセルサイズ 17µm×17µm、 ピクセル数 832×512(43 万画素))ことから高解像度の X 線像の撮像が期待できる。LCS X 線によって取得 した X 線イメージを以下の Fig. 5 に示す。サンプル としては唐辛子を用いている。X 線のエネルギーが 比較的低いため、軽いサンプルを用いた。サンプル は検出器に接着し、密着露光によってイメージの取 得を行った。Fig. 5 を見てわかるとおり、非常に高 解像度のイメージが取得できていることがわかると

Figure 5: Chili LCS X-ray image by SOI pixel sensor.

ともに、唐辛子のヘタ、胎座、種子、乾燥して収縮 した部分などがそれぞれ確認できることがわかる。 横方向に入っている筋は SOI センサの読み出し回路 が区画ごとに分けられているためであり、今後改善 されていく予定である。また、現在でもまだ十分な X線強度でないため、より LCS X線強度が増強され ていくにしたがってより鮮明な X線像が取得できる と考えている。

5. まとめと今後の課題

我々は光蓄積共振器とマルチバンチ電子加速器を 用いたレーザーコンプトン散乱 X 線源の開発を行っ ている。昨年度から 1 年間かけて加速器・レーザー 両面から改良を行い、すでに LCS X 線生成試験に 至っている。これまでに得られた X 線強度は 1.8× 10⁷ph./sec/totalbandwidth であり、改良前の 100 倍以 上を達成している。また、新たに開発された SOI セ ンサを用いた LCS X 線検出試験を行い、高 S/N での 検出が可能であること、スペクトルを検出可能であ ること、高解像度の X 線イメージの取得が可能であ ることを確認し、非常に有用な知見を得ることがで きた。

今後は改良の目標であった3ケタのX線強度の増 強を目標に改善・調整に努める。現時点で目標値に 達していないパラメータとして、電子ビーム側では バンチ数・衝突点サイズ・(エネルギー)が挙げられ る。これらの改善によって5倍程度のX線強度増強 が見込める。また、レーザー側としては蓄積強度・ 衝突点サイズが挙げられる。現在の蓄積強度はミ ラーの破壊閾値によって制限されているが、衝突点 サイズを絞り込むことによってミラー上にレーザー サイズも大きくなり、蓄積可能強度も増える。レー ザー側の改良によって約1ケタの改善が可能である。 したがって、目標値以上のX線強度が期待でき、 LCS X 線 Flux として 10⁹ph./sec/totalbandwidth に少し でも近づけるよう改良を行っていく予定である。ま た、十分な X 線強度が得られた後には、屈折コント ラストイメージングや位相イメージングなどを行い、 LCS X 線の特徴である微小線源サイズを利用した応 用を行っていく予定である。

参考文献

- [1] K. Sakaue et al., Rev. Sci. Instrum. 81(2010)123304.
- [2] K. Sakaue et al., AIP Conf. Proc., 1466 272-277 (2012).
- [3] 量子ビーム基盤技術開発プログラム HP http://www.quantumbeam.net/
- [4] M. Fukuda et al., Proc. of this conference, SAP114.
- [5] K. Sakaue et al., Nucl. Instrum. Meth. A637(2011)S207.
- [6] Y. Arai et al., Nucl. Instrum. Meth., A636(2011)S31-S36.