KU-FEL 計画——概要と現状 ——

山崎 鉄夫1,大垣 英明,紀井 俊輝,増田 開,留高 烈,山根 功士朗,

松村 慎也, 高松 輝久, 督 寿之, 吉川 潔

京都大学エネルギー理工学研究所

〒611-0011 京都府宇治市五ヶ庄

概要

京都大学エネルギー理工学研究所においては,エ ネルギー科学研究のための,小型で経済的な赤外~ 遠赤外領域での自由電子レーザー装置を建設中であ る。本報告においては,全体計画の概要,計画の進 捗状況に関して簡単に述べる。

1.はじめに

FEL の波長可変性に代表される長所は,最近では 広く知られているが,装置が大型で高価になること から,利用面では意外に進んでいない。当所では, 大学の研究所レベル,産業界において使用可能な小 型で経済的な自由電子レーザー(free-electron laser, FEL)装置の研究・開発を進めている。FELは,当面 当所におけるエネルギー科学研究等に使用される予 定である。勿論,将来的には所外,学外のユーザも 視野に入れている。FELの波長範囲は赤外~遠赤外 領域を目標にしている。計画の概要を図1に示す。S バンド 4.5 空胴高周波電子銃によって入射部の小型 化を図り、FEL 発生後の電子ビームをリニアック加 速管に戻してエネルギー回収を行う。エネルギー効 率を上げることが目的ではあるが、常伝導リニアッ クを使用するので、回収率はそれ程期待できず、む しろ放射線遮蔽の負担を軽減することに主眼を置く。 偏光可変なFELを考えているが、偏光可変アンジュ レータを使用するか、外部で偏光可変にするかは未 定である。また、通常大強度になるに従ってFELの バンド幅が広がるが、将来的には図1に示した2段 階の MOPA (master oscillator and power amplifier)方 式等によってバンド幅を狭めることも考えている。 また、逆 Compton 散乱によって高輝度準単色X線を 発生させることも計画しているが、この方式の短所 である低収率を改善するために、FEL そのものをレ ーザーとして使用することを考えている。

1.リニアック

加速器としては,当所において開発してきた 4.5 空胴高周波電子銃と3mのリニアック加速管を準備 している。高周波電源は,RF電子銃と加速管とは

¹ E-mail: yamazaki@iae.kyoto-u.ac.jp

別々のものを使用する。

2.1 高周波電子銃

入射器は,当所において開発してきたSバンド4.5 空胴高周波電子銃[1]を使用する。クライストロン は10 MWのThomson TV2019B6を使用している。カ ソードは可能な限り現在の熱陰極型を使用したいと 考えている。光陰極も考慮に入れてはいるが,レー ザーが高価になり,また現状では高輝度にするほど 寿命が短い。電子銃内における電子ビームの挙動は, 当所において開発されたシミュレーション・コード によって計算がなされている[2]。当所では,既にこ の電子銃によって9 MeV 程度までの電子加速を行い, 図2に示す電子ビーム診断系において,電子ビーム のスペクトル,プロフィール等の測定を行っている。 エミッタンスの測定は現在進行中である(本研究会 8P-25 参照)。

熱陰極型高周波電子銃の最大の短所は逆加速電子 によるカソードのヒーティングであり、当所におい ても重大な問題となっているが、当所ではその定量 的な測定を行い、解決法を模索している [3]。カソー ドの表面温度は、赤外線温度計によって計測され、 その結果と上記シミュレーションによって、逆流電 子ビームのパワーを定量的に算出することに成功し、 当然ではあるが、逆流電子による影響が深刻であこ とが判明している。また、逆流電子の抑制法を試験 しているが、これらの研究の最近の進展に関しては、 本研究会の 7P-16 を参照されたい。

高周波電子銃からリニアック加速管までのアクロ マティックなビーム輸送系の,電磁石等の部品は準 備完了しているが,現在はまだ加速管まで接続して おらず,図2の配置によって実験を行っている。エ ネルギースペクトルは,偏向電磁石と輸送系に置か れたスリットによって測定しているが,加速管に入

図2 高周波電子銃ビーム診断系

る電子ビームのエネルギー選別も,このスリットに よって行われる。4.5 空胴高周波電子銃での加速の結 果,電子ビームエネルギーが数 MeV になり,α電磁 石を使用すると大きくなり過ぎるのでこの方式を選 んだ。

2.1 リニアック加速管

リニアック加速管,高周波源,電子ビームの主要 パラメータを表1に示す。加速管は電総研から,ク ライストロンは高エネルギー加速器研究機構から借 用したものである。クライストロン電源は,高周波 電子銃用,加速管用共に日新電機社製のもので,比 較的小型で,かつ PFN 出力波形はモータ駆動によっ て遠隔調整が可能で,従って電子ビーム波形を観測 しながら波形を調整することが可能ある。表1にあ る電子ビームのパラメータは予測値であり,確認し たものではない。

表1 加速管,電子ビームのパラメータ	
加速管	
周波数	2856 MHz
構造	定勾配
モード	2/3 π
有効長	2.9 m
ディスク内径	25.00 ~21.84 mmø
高周波源	
クライストロン	三菱 PV-3030
ピーク出力	20 MW
マクロパルス幅	< 10 µsec
パルス繰返し	$\leq 10 \text{ pps}$
クライストロン電源	
パルス幅	< 10 µsec
リップル	< 0.3 % p-p
電子ビーム	
エネルギー	$20 \sim 40 \text{ MeV}$
ビームサイズ	$1 \times 1 \text{ mm FWHM}$
ミクロバンチ長	<10 psec
エネルギー幅	~1.5 %

本計画において FEL に使用される電子エネルギー は、2 段階方式による大出力化や FEL 逆コンプトン 散乱を考慮しても、高々2%である。従って、将来は 使用済みの電子を加速管の減速位相に再入射してエ ネルギー回収することを計画している。Sバンド常伝 導リニアックにおけるエネルギー回収の研究に関し ては、7P-26を参照されたい。常伝導リニアックにお いては、加速管壁における高周波の熱損失が大きく、 もとより高い回収率は期待できないが、低エネルギ ーになったビームをビームダンプに入れるので、放 射線遮蔽の負担は大幅に軽減できるものと期待して いる。さらに遠い将来計画としては、超伝導リニア

ックを使用することも視野に入れている。

リニアック通過後の電子ビームは,当面の計画を 示す図3に見られるように,60°偏向磁石と四重極電 磁石によるアクロマティックな輸送系を通してアン ジュレータに入射される。この図では,エネルギー 回収の基礎実験までは考慮されているが,FEL 逆コ ンプトン散乱に関しては描かれていない。

3.自由電子レーザー

3.1 アンジュレータ

本計画では,偏光可変 FEL を目標にしている。ア ンジュレータ自体を偏光可変型とする場合,小貫型 と APPLE-II 型が候補として挙げられ,短周期にする 場合は後者がやや有利と考えられるが,いずれにせ よ相当の困難が予想される。その場合は,外部にお いて何らかの方法で偏向を変えることが考えられる が,FEL 強度の問題と共に,赤外~遠赤外領域で適 切な素子があるかどうかが鍵である。この場合,当 所において研究を行っている staggered array 型アン ジュレータ [4] の使用も考えられる。

当所では、当面は旧自由電子レーザ研究所(FELI, 現大阪大学工学研究科自由電子レーザー研究施設 iFEL)と東大のグループの東大原子力施設のリニア ックにおける発振実験の折に使用したアンジュレー タを使用する予定である。このアンジュレータは Nd-Fe 系のもので、横型であるが、構造に関しては、 文献 [5] を参照されたい。周期長 40 mm,周期数 40 である。ただし、これはギャップ間隔が固定のもの であったので、当所において可変になるように改造 した。ギャップ間隔が改造前の 26 mm の場合の FEL 波長と理想的ゲインを図 4 に示す。ゲインに関して は、単なる 1 次元計算の結果であり、重畳因子、電 子ビームパラメータ等はまったく考慮されていない。 当所では、計画に沿った FEL のシミュレーションを 開始しているので、詳細は 8P-6 を参照されたい。

前述のように, 偏光可変 FEL に関しては, 次のス テップで考慮する。

図4 KU-FEL における FEL 波長と理想的ゲイン

3.2 光学系

光共振器,光測定系に関しては,あまり設計が進んでいない。光共振器長に関しては,上記 FELI と東大のグループの実験 [5] 同様 3.78 mを予定している。 ミラーの曲率,出力結合等の詳細は,上記 FEL シミュレーションによって決定する予定である。アンジュレータ放射,FEL の出力,スペクトルの測定系に関しても,未定である。

4.おわりに

以上,KU-FEL計画の概要と現状に関して簡単に述べた。現在文部科学省への使用施設変更申請を進めているところであり,許可が降り次第設置を開始する予定である。

最初に述べたように,FEL の利用に関しては,当 面当所内のグループとの協力によって進めることを 考えている。当所では,炭酸ガス等の環境有害物質 を光触媒反応によって有用物質に変換する研究,生 体研究,核融合炉材料の研究等を行っているグルー プがあり,FEL の高選択性を利用して,それらの研 究において協力できるものと期待している。研究所 内外の利用者も歓迎する。

謝辞

本計画においては,京都大学化学研究所の野田章 氏,岩下芳久氏,白井敏之氏,京都大学工学研究科 量子理工学研究実験センターの吉田紘二氏,産業技 術総合研究所の三角智久氏,大阪大学工学研究科の 粟津邦夫氏,経済産業省資源エネルギー庁の西村栄 一氏,日新電機(株)の大下英次氏,当研究所の西 之園善之氏をはじめとする多くの方々の御協力をい ただいている。

参考文献

 Y. Yamamoto, T. Inamasu, K. Masuda, M. Sobajima, M. Ohnishi, K. Yoshikawa, H. Toku and E. Tanabe: Nucl. Instr. & Meth., A393, 443-446 (1997).

[2] K. Masuda, K. Yoshikawa, M. Ohnishi, Y. Yamamoto, H. Toku, M. Sobajima and J. Kitagaki: IEEE Trans. on Microwave Theory & Tech., **46**, No. 8, 1180-1182 (1998).

[3] T. Kii, T. Yamaguchi, R. Ikeda, Z. Dong, K. Masuda, H. Toku, K. Yoshikawa, and T. Yamazaki: Nucl. Instr. & Meth, A475 (2001) 588.

[4] K. Masuda, J. Kitagaki, Z. Dong, T. Kii, T. Yamazaki, and K. Yoshikawa: Nucl. Instr. & Meth, A475 (2001) 608; J. Kitagaki, K. Masuda, Z. Dong, T. Kii, T. Yamazaki, and K. Yoshikawa: *ibid.*, 613.

[5] E. Nishimura, K. Saeki, S. Abe, A Kobayashi, Y Morii, T. Keishi, T. Tomimasu, R. Hajima, T. Hara, H. Ohashi, M. Akiyama, S. Kondo, Y. Yoshida, T. Ueda, T. Kobayashi, M. Uesaka, and K. Miya: Nucl. Instr. & Meth, A341 (1994) 39.