The First trial of XY-coupled Beam Phase Space Matching for Three-dimensional Spiral Injection*

Muhammad Abdul Rehman^{#,1)}, H. Iinuma, S. Ohsawa¹, H. Nakayama¹, K. Furukawa¹, T. Mibe¹, H. Hisamatsu¹, H. Hirayama², K. Oda², R. Matsushita³, N. Saito¹, K. Sassaki¹

1)KEK, 2)Ibaraki University, 3)The University of Tokyo

- Introduction
- Spiral Injection Test Experiment (SITE) at KEK
- Phase Space Matching

Conclusion

*Work supported by "Grant in Aid" for Scientific Research, JSPS (KAKENHI#26287055, KAKENHI#19H00673).

Muon g-2/EDM Experiment at J-PARC

Muon's g-2

3.80 discrepancy exist between

Experiment and Standard Model

Excellent Probe for New Physics(NP)

$$\vec{\mu} = g\left(\frac{q}{2m}\right)\vec{s}$$
 $a_{\mu} = \frac{g-2}{2}$

Muon's EDM

- Upper Limit; 0.9 × 10⁻¹⁹ e.cm
 - No finite EDM found Yet

Any Finite value of EDM → NP

$$\vec{d} = \eta \left(\frac{q}{2mc} \right) \vec{s}$$

Why inject beam spirally? Conventional 2D injection (BNL) E34 3T MRI type storage magnet

14 m orbit, To avoid beam hit at inflector (77 mm), kick angle become 10.8 mrad within 149 ns.

0.66 m orbit kick angle is 233 mrad within 7.4 ns.

Impossible by any existent technology. 3 T is too high to be canceled by inflector.

How to inject beam spirally?

To resolve technical challenges a new 3D Spiral Injection scheme has been invented

4. The beam will be stored at the midplane under the weak focusing field

The Elegance and Advantages

- ➤ Smooth connection between injection and storage sections: No need of Inflector
- ➤ All in one storage magnet, reduce source of error fields: No Electric Quad
- ➤ No need to kick within a single turn: Simple kicker

However, <u>Unprecedented</u>

Therefore, it is indispensable to prove the feasibility of this new scheme.

Spiral Injection Test Experiment (SITE)

Spiral Injection Test Experiment Setup at KEK Tsukuba Campus

Phase Space Matching for SITE

X (mm)

- Due to the axial symmetric field of the solenoid magnet an appropriate XY coupled beam is required
- ☐ Moreover, particles at different vertical positions face different radial field and eventually vertical blow-up
- ☐ Phase space matching is essential to avoid vertical blow-up

Phase Space Matching for SITE

Apply transfer matrix consists of coupling parameters (R1,R2,R3,R4) and Twiss parameters to input phase space

$$X = M.X_0$$

$$X = M.X_0$$
 $M = U_{out}^{-1}.D.U_{in}^{-1}$

Twiss Parameters

$$\begin{pmatrix}
D_x & 0 \\
0 & D_y
\end{pmatrix}$$

Coupling Parameters

$$\begin{pmatrix} \mathbf{D}_{x} & \mathbf{0} \\ \mathbf{0} & \mathbf{D}_{y} \end{pmatrix} U_{out} = \begin{pmatrix} \mu & 0 & -R_{4} & R_{2} \\ 0 & \mu & R_{3} & -R_{1} \\ R_{1} & R_{2} & \mu & 0 \\ R_{3} & R_{4} & 0 & \mu \end{pmatrix}$$

 $U_{in}^{-1} = Identity$ in our case, From Coupling Measurement.

$$M = U_{out}^{-1}D$$

Non-zero values of (R1, R2, R3, R4) shows coupling

The matching beamline

Iterate θ and k to match slope

 $M_{total} = L5.B1.L4.Q3_R.L3.Q2_R.L2.Q1_R.L1$

Results

Without XY-coupling

With XY-coupling

Conclusion

- To overcome the vertical beam blow-up in the solenoid-type storage magnet, a beam transport line consisting of three rotatable quadrupole magnets has been designed and built
- ➤ The dramatic reduction in the vertical beam size was observed with the appropriate setting of three rotatable quadrupole magnets

Without any beam phase–space matching, the beam size grows to 8.18 ± 0.03 mm (1σ) at the kick point (Y ~100 mm). The vertical beam blow–up was reduced to 2.56 ± 0.005 mm (1σ) at the kick point with the appropriate combination of the three rotation

quadrupole magnets.

No-Coupling