KEK 電子・陽電子入射器用クライストロン電源の現状 PRESENT STATUS OF THE KLYSTRON MODULATOR FOR THE KEK ELECTRON-

明本光生^{#, A)B)}、福田茂樹 ^{A)}、本間博幸 ^{A)},川村真人 ^{A)},中島啓光 ^{A)},夏井拓也 ^{A)B)},設楽哲夫 ^{A)}

POSITRON INJECTOR LINAC

Mitsuo Akemoto^{#, A)B)}, Shigeki Fukuda^{A)}, Hiroyuki Honma^{A)}, Masato Kawamura^{A)}, Hiromitsu Nakajima^{A)},

Takuya Natsui^{A)B)}, Tetsuo Shidara^{A)}

^{A)} High Energy Accelerator Research Organization (KEK)

^{B)} The Graduate University for Advanced Studies (SOKENDAI)

Abstract

This paper describes present status of the klystron modulator for SuperKEKB injector linac. The rf system of this linac consists of 60 high-power klystrons, each capable of 50 MW, 4.0 µs pulsed power at a repetition rate of 50 Hz. Each klystron is pulsed by its own PFN-type modulator, containing a thyratron switch tube. Average lifetime of the thyratron is approximately 34,500 hours. A solid-state switch based on an array of thyristors to replace the thyratron is in development to improve the reliability and maintainability of the modulator. A 43 kV, 34 kJ/s PFN-charging power supply has been also developed to realize a compact modulator, which makes space for new equipments.

1. はじめに

KEK 電子・陽電子入射器[1]は高周波源として 60 台 の最大 50 MW、パルス幅 4 µs、繰り返し 50 Hz のマイク ロ波を出力する S バンドクライストロンを使用している。そ れを駆動する電源としてサイラトロンを使用した PFN タイ プのパルス電源が用いられている。本稿では、このクライ ストロン電源の現状と現在進められている電源の高信頼 化、高精度・安定化、小型化へ向けた技術開発につい て報告する。

2. クライストロン電源

2.1 概要

入射器のクライストロン電源は従来の LC 共振充電型 電源(46 台)とスイッチング(インバータ)充電型電源(14 台)の 2 種類の電源が使用されている。インバータ充電 型は従来の高圧 DC 部、充電チョークトランスと de-Qing 回路から構成する充電システムをインバータ充電器に置 き換えたもので、従来の電源筐体の 1/3 のサイズになり、 大幅に小型化できる。これは C-band 加速システムの開 発時に電源の小型化[2]が課題となり、そのために開発さ れたものであるが、入射器の増強(陽電子増強、ダインピ ング設置、4 リング同時入射用パルス電磁石の設置等) によってクライストロンギャラリーに新しい機器を設置する ためのスペースが必要となり、既存のクライストロン電源 の小型化が進められた。そのため、S-band 用にインバー タ充電器の充電能力を上げた充電器が開発された。クラ イストロン電源の主な仕様を Table 1 にまとめる。

2.2 サイラトロンについて

クライストロン電源で最も重要なパーツで、加速器の稼 働率[3]へ直接影響を与えるのがサイラトロンである。サイ ラトロンはこれまで 3 種類、CX2410K(e2V 社製)、 F241(Triton 社製)、L4888B(Litton 社製)が使用されてきた。Figure 1 に KEKB 加速器コミショニングが開始した 1998 年 10 月から Belle 実験の運転終了する 2010 年 6 月 30 日まで入射器運転中に故障したサイラトロン 98 台 の寿命分布を示す。平均寿命は 34,500 時間であった。 この期間中は繰り返しに変化がなく、50Hz で運転された。

Table 1: Specifications of the Kystron Modulator

Peak power	110 MW
Average power	30 kW
Pulse transformer step-up ratio	1:13.5
Primary output pulse voltage	22.5 kV
Primary output pulse current	4.8 kA
PFN total capacitance	0.62 µF
Pulse duration	5.6 µs
Pulse flattop	4.0 µs
Pulse flatness(Peak-Peak)	0.3%
Output pulse stability(Peak-Peak)	0.3%
Time jitter(Peak-Peak)	10 ns
Thyratron anode voltage	45 kV
Pulse repetition rate	50 Hz

このデータからサイラトロンの平均寿命は短く、品質の ばらつきが大変大きいことが分かる。スタンバイのない運 転中でのサイラトロンの交換は直接加速器の稼働を止め ることになる。また、サイラトロンは放電管なので、安定に 動作させるためには定期的なガス調整(リザーバ電圧と キープアライブ電流の調節)が必要で保守の面[4]でも大 変である。さらに、時代の流れから、この種類のサイラトロ ンを製造することができる会社が減り、今では1 社のみ で、将来、供給問題が起こりかねない。従って、これらの 課題を解決するために、現在サイラトロン代替半導体ス イッチの開発を進めている。これについては、第4章で詳 しく述べる。

Figure 1: Failed thyratron life profile.

3. インバータ充電器

3.1 概要

インバータ充電器は一体型で電源筐体の 19 インチ ラックに装着できる構造で、電源筐体の内部は詰まって おり、そのため充電器の外装に厳しい制限が強いられる ため、最大出力電圧を 43kV に下げて小型に設計した。 SuperKEKB では、2ms のビームタイミングの変動がある ため、AC 入力ラインに-5%の電圧変動があった場合で も 17ms 以内で PFN の 43 kV 充電を完了する必要があ る。そのため、インバータ充電器(主)の平均出力電流が 1.57A 以上が必要となる。

また、高精度の電圧安定度が必要なところではスイッ チング周波数を70 kHzまで上げた高精度に特化した小型の補充電器(補)と組み合わせて高精度充電できる方 式をとっている。その場合、充電器の充電電圧の設定が ノイズによる影響を受けないように、従来やられている信 号ケーブによるアナログ(電圧)設定から光ファイバーによ るデジタル設定へ変更した。Table 2 にインバータ充電 器の主な仕様を示す。インバータ充電器の現状につい ては本学会の発表[5]を参照して下さい。

3.2 充電インタロック

インバータ充電器は異常充電時、例えば充電中又は 充電後サイラトロンの自爆等によって、充電期間中(50Hz 運転では 20ms)に正常に PFN に充電されない場合、充 電を停止するインタロック機能を持たせている。サイラトロ ンは自爆しても耐圧がすぐに回復する場合があるため、 連続運転を続行させるために、連続して2回以上発生し た時(最大5回まで設定できる)に停止すことにしている。 インタロックで停止した場合、記録された充電波形を確 認した後、手動で再起動しているので、約1分程度の停 止時間が生じる。この方法によって、電源の稼働率を上 げることができる。Figure 2に2回連続で正常に充電で きなかったため停止した充電波形の例を示す。

Table 2:	Specifications	of the	Switching	Power	Supply
	Speen.e	· · · · · · ·	S		~~ppij

	Main	Sub
Output voltage(kV)	43	43
Average current(A)	1.57	0.2
Switching frequency(kHz)	40	70
Voltage stability (peak-peak)(%)	0.3	0.03
Charging power(kJ/s)	34	5

Figure 2: PFN charging waveforms. CH1 PFN charging voltage (10 kV/div.), CH2 Charging current (1 A/div.)

4. 半導体スイッチの開発

4.1 概要

現在使用している電源筐体に組み込まれているサイラトロン関係(サイラトロンシャーシ、リザーバ電源、キープ アライブ電源)のユニットを取り外して、そこに半導体ス イッチのユニット関係に入れ替える方式で進めている。ま た既存の AC 入力電源、トリガー信号やインタロック信号 がそのまま併用できるようにしている。Table 3 にサイラト ロン代替半導体スイッチの主な仕様を示す。

4.2 設計[6]

複数個の高速スイッチング(高 di/dt)が可能な半導体 素子を直列接続して高電圧化、並列接続して大電流化 する方法で高電圧・大電流の半導体スイッチが設計、製 作される。今回採用した半導体スイッチ素子は、定格 1.5 kV の還流ダイオード付きの大電流サイリスタである。半 導体スイッチは素子 3 並列 5 直列を一つのユニットとして、それを多段に直列接続した構成になっている。各半 導体素子の放熱器(ヒートシンク)はユニットに取り付けら れた小型のファンで強制空冷され、また各素子のゲート トリガー信号は光ケーブルで送られる。Figure 3 に 8 段 のユニットで構成された半導体スイッチの外観を示す。ス イッチ本体の下部に設置されているパネルユニットは制 御部(制御電源、光分配器、トリガー入出力変換器)であ る。

Table 3: Specifications of the Solid-State Swite	ch
--	----

Peak anode voltage	43 kV
Peak anode current	4.3 kA
Pulse width	6 µs
Pulse repetition rate	50 Hz
Turn on dI/dt	> 8 kA/µs
Turn on time jitter(rms)	< 2 ns

Figure 3: Solid-state thyratron replacement switch installed in modulator.

4.3 性能試験

半導体スイッチには還流ダイオードが入っているため、 PFN と負荷のインピーダンスミスマッチからクライストロン に 100kV 以上のスパイク逆電圧が発生する。その逆電 圧を低減するために PFN に EOL クリッパー回路[7]を入 れて試験を行なった。半導体スイッチの持つインダクタン スが大きくなると立ち上がりが遅くなるので、そのインダク タンスをできるかぎり小さくすることが肝要である。そのた め、半導体スイッチのユニット直列接続数を7 段にして 繰返し運転試験と短絡試験を行なった。Figure 4 に充電 電圧 43 kV、繰返し 50Hz での半導体スイッチの電圧・ 電流波形を示す。また、Fig. 5 にその時のクライストロン 電圧波形を示す。同じ運転条件で、サイラトロンでのクラ イストロン電圧波形と比較してほぼ同じであった。短絡試 験は通常の2 倍の電流が流れる厳しい試験になる。パ ルストランスの1 次側を短絡して、充電電圧 43 kV で 7 回試験を行なったが問題はなかった。その後、繰返し運 転を続けているが動作に問題はまだ起きていない。従っ てサイラトロンに匹敵するスイッチ性能があることが確認 できた。

Figure 4: Switching waveforms with solid-state switch. CH1 Switch anode voltage (10 kV/div. 1 μ s/div.), CH2 Switch anode current (1 kA/div.)

Figure 5: Klystron voltage waveform with solid-state switch. $(37.5 \text{ kV/div.}, 1 \mu \text{s/div.})$

5. まとめ

最近のパワーエレクトロニクスの著しい発展で、電圧・ 電流耐量の大きい、また高速の半導体スイッチ素子が開 発され、クライストロン電源の小型化、高信頼化に応用で きるようになった。現在開発中のサイラトロン代替半導体 スイッチは、サイラトロンに匹敵するスイッチ性能があるこ とが確認できた。今後、長期間の連続運転を行なって信 頼性の面を評価する予定である。

謝辞

半導体スイッチの開発にあたりましては、日新パルス 電子(株)の原田瞬氏、佐藤尚昇氏、大下英次氏に大変 お世話になりました。この場をお借りしてお礼を申し上げ ます。

参考文献

- [1] Y. Seimiya *et al.*, "Present Status of the KEK Electron/Positron Injector Linac", these Proceedings.
- [2] H. Nakajima et al., "小型パルス電源の特性と今後の課題", Proceedings of the 28th Linear Accelerator Meeting in Japan, Tokai, pp. 48-50, 2003.
- [3] M. Akemoto *et al.*, "Present Status of Klystron Modulator for the KEK Electron-Positron Injector Linac", Proceedings of the 33th Linear Accelerator Meeting in Japan, Tokai, pp. 892-894, 2008.
- [4] T. Toufuku *et al.*, "Operation Statistics and Maintenance Activity of RF System in KEK Electron-Positron Linac(II)", these Proceedings.
- [5] M. Kawamura *et al.*, "Present Status of Inverter Supplies for Modulators in KEK Electron-Positron Linac", these Proceedings.
- [6] S. Harada *et al.*, "Development of 50kV Semi-conductor Switch for Modulator", Proceedings of the 14th Annual Meeting of Particle Accelerator Society of Japan, Sapporo, pp. 462-464, 2017.
- [7] H. Honma et al., "EOL クリッパー回路の試作と動作", Proceedings of the 28th Linear Accelerator Meeting in Japan, Tokai, pp. 348-350, 2003.