
IMPROVEMENT OF EPICS BASED ACCELERATOR CONTROL SYSTEM
RELIABILITY: REDUNDANT IOC FOR ATCA AND EPICS TEST

AUTOMATION

A. Kazakov, K. Furukawa, M. Satoh, T. Suwada, S. Michizono, KEK, Tsukuba, Japan
M. Clausen, G. Liu, DESY, Germany
A. Johnson, APS, Argonne NL, USA

Abstract

Modern accelerators require reliable control systems.
With constantly growing size and complexity of control
systems the reliability and availability concerns become
essential. Requirements for the modern systems are to
provide 99-99.9% availability (which means several days
of down time yearly). In order that some subsystems like
power supply, cryogenic plants should virtually never fail
(99.(9)% availability). Therefore, redundancy is a must in
such places. This work describes implementation of
redundant EPICS IOC (RIOC) with support for ATCA.
ATCA is a modern and reliable platform, which is
suggested for ILC control system. RIOC, in conjunction
with ATCA hardware, promise to provide very highly
reliable systems. Another important question is software
quality. Modern control systems are complex software
systems, consisting of many simultaneously running
software. An automated system test package for EPICS
was developed to allow transparent testing process over
different operating systems and configurations.

APPROACHES TO HIGH RELIABILITY
Accelerator Control System is a complex organization

of hardware, software, humans and “procedures”. Each of
these components can be targeted separately or together in
order to improve reliability. I.e. for humans we can
provide better training, create user-friendly and foolproof
software, good and up-to date documentation, logging and
monitoring facility can influence human efficiency as
well. Hardware: monitoring and logging, good design
allowing easy maintenance and service in case of a
failure, availability of spare parts. For the most critical
parts of the system (such as cryogenic plants) redundancy
must be implemented. Software is also critical
component. Due to its nature it has bugs from the very
beginning and replacement of the program does not fix
the problem, in contrast to hardware. Therefore thorough
testing of the software is essential to build reliable
system.

REDUNDANT IOC
An EPICS redundant IOC was originally developed at

DESY. Two major fields of application were defined:
1. Redundancy for cryogenic plants. In this case, the

failure may be caused by malfunctioning hardware such
as power supplies or fans. An automatic fail-over
mechanism should guarantee system stability. However,

over the years it was sometimes necessary to manually
switch between the main and backup processors due to
maintenance work during the runtime period (which is
usually one year or more). It might be useful for a
software update. Current EPICS does not allow addition
or deletion of records and databases during operation.

2.Redundancy for controllers in the XFEL tunnel.
Although the main origin of switchover in the first case
would be a manual action, it is expected to occur
automatically in the XFEL tunnel. Due to high radiation,
damage to the CPU and memory is highly possible. The
software update is not very important because of more
frequent maintenance days when this operation may be
performed.

By the design draft one major goal was set: Any
redundant implementation must make the system
more reliable than the non-redundant one. Precaution
must be taken especially for the detection of errors that
shall initiate the fail-over. This operation should only be
activated if there is no doubt that maintaining the actual
mastership definitely causes more damage to the
controlled system than an automatic fail-over. The fail-
over time in any case was defined to be more than several
seconds and less than 15 s. The system implemented
shows failover times less then 2s.
Hardware Architecture

The hardware architecture consists of two redundant
IOCs controlling a remote I/O via shared media such as
the Ethernet. The redundant pair shares two network
connections for monitoring the state of health of their
counterpart, where the private network connection is used
to synchronize the backup to the primary and the global
network is used to communicate data from the primary to
any other network clients requiring the data.

Figure 1: Redundant IOC hardware architecture

Software Components
An EPICS redundant IOC consists from four major

parts Redundancy Monitoring Task (RMT), Continuous
Control Executive (CCE), State Notation Language
Executive (SNLE) and IOC-part (which is same as non-
redundant IOC). RMT – is a key component of that
system. RMT is responsible for monitoring all other parts
of the system, checking connectivity and making
decisions regarding fail-over. Other parts of the system
(CCE, SNLE, IOC) are controlled by RMT and are called
“RMT drivers” accordingly. Any other software which is
we want to make redundant has to implement RMT-driver
API interface. Both standalone and IOC-related software
such as device drivers can be made redundant using
RMT. One of the functions of RMT is to check status of
its drivers and exchange this information with its partner.
Each RMT driver implements its own logic for checking
whether it is “ok” or “not ok” depending on the particular
driver and implementation. Exactly this approach was
used to make ATCA-aware extension for RIOC.

CCE and SNLE are RMT-drivers that synchronize
IOC-database and SLE programs between peers. Those
parts are not relevant to the topic of this paper, so we will
not go into the details of their functionality and
implementation.

ADVANCED TELECOM COMPUTING
ARCHITECTURE – ATCA

ATCA standard is defined by PCI Industrial Computer
Manufactures Group with 100+ companies participating.
It is relatively new standard, but it has been already
widely supported by major vendors. It is primarily
targeted to requirements of carrier grade communications
equipment and incorporates the latest trends in high speed
interconnect technologies, next generation processors and
improved reliability, manageability and serviceability [1].
Availability of ATCA crate is designed to be 99.999%.
That and other features of ATCA standard made it the
platform of choice for the ILC control system.

Smart Hardware
ATCA defines extensive monitoring and controlling

capabilities. All the components of an ATCA system are
interconnected via (usually) redundant Intelligent
Platform Management Bus (IPMB).

One particular board – Shelf Manager (SM) - plays a
centre role in the management of the system. SM is
responsible for polling and controlling other hardware via
IPMB. Usually SM implements some simple logic for
monitoring overall system health and some fail-over
procedures (which are vendor and hardware specific).

Figure 2: Shelf manager

SM provides access to the hardware for third-party via
Hardware Platform Independent library (HPI) or SNMP.
HPI covers all the differences in actual implementation of
the ATCA standard and provides hierarchal
representation of all available hardware.

RIOC AND ATCA
It is possible to run “vanilla” RIOC on ATCA

hardware, but it will be no different from running it on
two separate “normal” PCs, though we may get some
indirect benefit from using reliable ATCA platform. But
we may get much more if we make RIOC aware of the
hardware its running on.

That ability to monitor the hardware of the system
allows us to improve reliability of RIOC. By
implementing ATCA-driver for RMT, we can include the
hardware status of a particular board or the whole system
into the fail-over decision procedure. For example if a
CPU temperature starts to rise, there is some limited time
before it will crash. And if properly monitored, we can
initiate the fail-over process before the actual hardware
failure happens. For the RIOC applications it gives us two
major benefits:

1. Failover happens while the system is still working,
so actual transition happens in a stable and
controlled environment.

2. Channel Access connections can be gracefully
closed. That will reduced reconnect time for
Channel Access Clients (CAC) drastically.
Normally in case of “hard” failure of a master
RIOC it takes up to 30 seconds for CAC to
reconnect to the slave RIOC (30 seconds is a
default EPICS connection time-out, actual time-
out may be changed by user). Even though slave
RIOC notices the problem instantly and takes over
within 2 seconds.

Figure 3: ATCA aware RIOC

Conclusion
We used a software solution (RIOC) aimed for highly

available and critical tasks and run it on the hardware
specifically designed to be very reliable (ATCA). RIOC
functionality was extended to use hardware sensors
information to make better failover decisions. The choice
of HPI library resulted in ATCA independent
implementation. Actual RMT-driver can be used on any
platform, which provides HPI library: for instance
modern server systems running Linux (HPI on top of
sysfs) or IBM blade-servers (HPI on top of SNMP).

EPICS TEST AUTOMATION

The Problem
EPICS supports multiple Operating Systems since

release 3.14 when EPICS libOSI (Operating System
Independent Library). Both client and server applications
can run on Linux, Windows, Mac OS, Solaris, vxWorks,
RTEMS, osf-alpha, FreeBSD. It is very common
situation when even within one laboratory more than one
OS is used in EPICS environment. Versions of these OS
also may differ very widely. And from version to version,
or from one distribution to another there may be so many
significant and not so much differences. Besides OS
differences, EPICS can run on a wide variety of hardware
platforms. All this makes it virtually impossible to test all
the possible combinations of operating systems and
hardware. Of course during the release phase EPICS
distribution is tested by the core-team, but this test does
not cover all the usage cases of EPICS in the real world.

There is a package called mrkSoftTest, which is system
integration test package for EPICS. It includes several
tests, which check CA network links, alarm functionality,
correctness of conversion functionality between remote
nodes, etc. Typical test scenario involves one or more
IOCs and several CA clients.

Figure 4: Typical test scenario includes many
components

The person who runs the test has to follow these steps:

1. Connect to remote station via SSH/Telnet/ SH
2. Configure & start EPICS IOC
3. Repeat steps 1-2 for require number of times to

start other IOCs
4. Start CA client(s), locally or remotely
5. Issue the required sequence of control commands

for IOC and/or start additional CA clients.
6. Gather the output from all the programs
7. Compare the output to the reference file.
8. Shutdown all the IOCs and CA clients.

This procedure is quite complex by itself, but becomes
more complicated when we introduce differences between
OS and Hardware. Commands and output may differ for
different architectures and particular configuration.

Figure 5: Commands and output may differ according to
the hardware and particular configuration

Most people do not remember how to run these test, and
have to read the instruction every time they run these test.
Overall this becomes very time and effort consuming
operation.

Test Automation
To solve this problem EPICS test automation package

(EPICS TAP) was developed. EPICS TAP simplifies the
process of running system integration tests and hides all
the low level details from the person running test. EPICS
TAP was developed using high level scripting language
Ruby.

Introduction of EPICS TAP made running test as
simple as “./runAlltests.rb” and then wait until it finishes.
Depending on the configuration some changes are
required for the configuration file (such as ip-addresses
and OS system types). EPICS TAP ruby classes can be
used to write additional test cases as well. EPICS TAP
provides fully automated infrastructure for testing EPICS
implementations.

REFERENCES
[1] AdvancedTCA, PCIMG 3.0 Short Form Specification

